Advertisement

An Efficient Computational Model for Simulating Stress-dependent Flow in Three-dimensional Discrete Fracture Networks

  • Soheil Mohajerani
  • Gang WangEmail author
  • Duruo Huang
  • S. M. E. Jalali
  • S. R. Torabi
  • Feng Jin
Tunnel Engineering
  • 44 Downloads

Abstract

In-situ modelling of stress-dependent fluid flow in fractured rocks is important for various applications in rock engineering. However, precise determination of the hydraulic aperture of subsurface fractures, particularly at great depths, is often quite difficult. One of the most important parameters affecting the aperture is the stress field. Therefore, in this study, a new FEM model is proposed to study the effect of the in-situ stresses on the flow rate in fractured rocks with limited fracture lengths using a one-way hydromechanical coupling scheme and various non-linear joint constitutive models. The model is computationally efficient and of low-cost for various applications, and it provides results that are consistent with those from time-consuming two-way coupling methods. A series of sensitivity analyses have also been carried out to investigate key parameters in the model and to demonstrate how the fracture aperture and fluid flow change with variation of the in-situ stress field.

Keywords

discrete fracture network joint constitutive model finite element method fluid flow sensitivity analysis fractured rock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ababou, R., Canamoni, I., and Elorza, F. J. (2005). “Thermo-hydroq-mechanical simulation of a 3D fractured porous rock: Preliminary study of coupled matrix-fracture hydraulics.” Proc. the Comsol Multiphysics Conference, France, pp. 193–198.Google Scholar
  2. Baca, R., Arnett, R., and Langford, D. (1984). “Modelling fluid flow in fractured porous rock masses by finite element techniques.” International Journal for Numerical Methods in Fluids, Vol. 4, No. 4, pp. 337–348, DOI: 10.1002/fld.1650040404.CrossRefzbMATHGoogle Scholar
  3. Bandis, S. (1980). Experimental studies of scale effects on shear strength, and deformation of rock joints, PhD Thesis, University of Leeds, Leeds, UK.Google Scholar
  4. Bandis, S., Lumsden, A., and Barton, N. (1983). “Fundamentals of rock joint deformation.” International Journal of Rock Mechanics and Mining Sciences, Vol. 20, pp. 249–268, DOI: 10.1016/0148-9062 (83)90595-8.CrossRefGoogle Scholar
  5. Berrone, S., Fidelibus, C., Pieraccini, S., and Scialo, S. (2014). “Simulation of the steady-state flow in discrete fracture networks with nonconforming meshes and extended finite elements.” Rock Mechanics and Rock Engineering, Vol. 47, No. 6, pp. 2171–2182, DOI: 10.1007/s00603-013-0513-5.CrossRefGoogle Scholar
  6. Beyabanaki, S. A. R., Jafari, A., Biabanaki, S. O. R., and Yeung, M. R. (2009). “A coupling model of 3-D discontinuous deformation analysis (3-D DDA) and finite element method.” Arabian Journal for Science and Engineering, Vol. 34, No. 2B, pp. 107–119.Google Scholar
  7. Bisdom, K., Bertotti, G., and Nick, H. M. (2016). “A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks.” AAPG Bulletin, Vol. 100, No. 7, pp. 1075–1097, DOI: 10.1306/02111615127.CrossRefGoogle Scholar
  8. Bisdom, K., Nick, H., and Bertotti, G. (2017). “An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks.” Computers & Geosciences, Vol. 103, pp. 21–35, DOI: 10.1016/j.cageo.2017.02.019.CrossRefGoogle Scholar
  9. Carpenter, C. and Practical, A. (2015). “Simulation method capturing complex hydraulic-fracturing physics.” Journal of Petroleum Technology, Vol. 67, No. 10, pp. 81–83.CrossRefGoogle Scholar
  10. Elsworth, D. (1986). “A hybrid boundary element-finite element analysis procedure for fluid flow simulation in fractured rock masses.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 10, No. 6, pp. 569–584, DOI: 10.1002/nag.1610100603.CrossRefzbMATHGoogle Scholar
  11. Erhel, J., De Dreuzy, J-R., and Poirriez, B. (2009). “Flow simulation in three-dimensional discrete fracture networks.” SIAM Journal on Scientific Computing, Vol 31, No. 4, pp. 2688–2705, DOI: 10.1137/080729244MathSciNetCrossRefzbMATHGoogle Scholar
  12. Farhadian, H., Hassani, A., and Katibeh, H. (2017). “Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran.” KSCE Journal of Civil Engineernig, Vol. 21, No. 6, pp. 2429–2438, DOI: 10.1007/s12205-016-0995-2.CrossRefGoogle Scholar
  13. Gan, Q. and Elsworth, D. (2016). “A continuum model for coupled stress and fluid flow in discrete fracture networks.” Geomechanics and Geophysics for Geo-Energy and Geo-Resources, Vol. 2, No. 1, pp. 43–61, DOI: 10.1007/s40948-015-0020-0.CrossRefGoogle Scholar
  14. Goodman, R. E., Taylor, R. L., and Brekke, T. L. (1968). “A model for the mechanics of jointed rocks.” Journal of Soil Mechanics & Foundations Division, Vol. 94, No. 3, pp. 637–660.Google Scholar
  15. Hoek, E., Kaiser, P. K., and Bawden, W. F. (2000). Support of underground excavations in hard rock, CRC Press.CrossRefGoogle Scholar
  16. Hu, L., Winterfeld, P. H., Fakcharoenphol, P., and Wu, Y.-S. (2013). “A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs.” Journal of Petroleum Science and Engineering, Vol. 107, pp. 1–11, DOI: 10.1016/j.petrol.2013.04.005.CrossRefGoogle Scholar
  17. Hyman, J. D., Gable, C. W., Painter, S. L., and Makedonska, N. (2014). “Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy.” SIAM Journal on Scientific Computing, Vol. 36, No. 4, A1871–A1894, DOI. 10.1137/130942541.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Itasca (2004). “3DEC user’s guide Version 4.0.” Itasca Consulting Group Inc.Google Scholar
  19. Jeong, W. C., Kim, J. Y, and Song, J. W. (2004). “A numerical study on the influence of fault zone heterogeneity in fractured rock media.” KSCE Journal of Civil Engineering, Vol. 8, No. 5, pp. 575–588, DOI: 10.1007/BF02899582.CrossRefGoogle Scholar
  20. Jin, F., Zhang, C. H., Wang, G. and Wang, G. L. (2003). “Creep modeling in excavation analysis of a high rock slope.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 9, pp. 849–857, DOI: 10.1061/(ASCE)1090-0241(2003)129:9(849).CrossRefGoogle Scholar
  21. Jing, L. (2003). “A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering.” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, No. 3, pp. 283–353, DOI: 10.1016/S1365-1609(03)00013-3.CrossRefGoogle Scholar
  22. Jing, L., Ma, Y., and Fang, Z. (2001). “Modeling of fluid flow and solid deformation for fractured rocks with Discontinuous Deformation Analysis (DDA) method.” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 343–355, DOI: 10.1016/S1365-1609(01)00005-3.CrossRefGoogle Scholar
  23. Jing, L., Min, K. B., Baghbanan, A., and Zhao, Z. (2013). “Understanding coupled stress, flow and transport processes in fractured rocks.” Geosystem Engineering, Vol. 16, No. 1, pp. 2–25, DOI: 10.1080/12269328.2013.780709.CrossRefGoogle Scholar
  24. Jing, L., Tsang, C. F., and Stephansson, O. (1995). “DECOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories.” International Journal of Rock Mechanics and Mining Sciences, Vol. 32, pp. 389–398, DOI: 10.1016/0148-9062(95)00031-B.CrossRefGoogle Scholar
  25. Karimi-Fard, M. and Durlofsky, L. (2016). “A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features.” Advances in Water Resources, Vol. 96, pp. 354–372, DOI: 10.1016/j.advwatres.2016.07.019.CrossRefGoogle Scholar
  26. Koudina, N., Garcia, R. G., Thovert, J. F., and Adler, P. (1998). “Permeability of three-dimensional fracture networks.” Physical Review E, Vol. 57, No. 4, pp. 4466–4479, DOI: 1063-651X/98/57(4)/4466(14).CrossRefGoogle Scholar
  27. Latham, J. P., Xiang, J., Belayneh, M., Nick, H. M., Tsang, C. F., and Blunt, M. J. (2013). “Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures.” International Journal of Rock Mechanics and Mining Sciences, Vol. 57, pp. 100–112, DOI: 10.1016/j.ijrmms.2012.08.002.CrossRefGoogle Scholar
  28. Lee, J., Choi, S., and Cho, W. (1999). “A comparative study of dualporosity model and discrete fracture network model.” KSCE Jounnal of Civil Engineering, Vol 3, No. 2, pp. 171–180, DOI: 10.1007/BF02829057.CrossRefGoogle Scholar
  29. Lei, Q., Latham, J. P., and Tsang, C. F. (2017). “The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks.” Computers and Geotechnics, Vol. 85, pp. 151–176, DOI: 10.1016/j.compgeo.2016.12.024.CrossRefGoogle Scholar
  30. Lei, Q., Latham, J. P., Xiang, J., and Tsang, C. F. (2015). “Polyaxial stress-induced variable aperture model for persistent 3D fracture networks.” Geomechanics for Energy and the Environment, Vol. 1, pp. 34–47, DOI: 10.1016/j.gete.2015.03.003.CrossRefGoogle Scholar
  31. Lei, Q., Wang, X., Xiang, J., and Latham, J. P. (2017). “Polyaxial stressdependent permeability of a three-dimensional fractured rock layer.” Hydrogeology J, pp. 1–12, DOI: 10.1007/s10040-017-1624-y.Google Scholar
  32. Mäkel, G. (2007). “The modelling of fractured reservoirs: Constraints and potential for fracture network geometry and hydraulics analysis.” Geological Society, London, Special Publications, Vol. 292, No. 1, pp. 375–403, DOI: 10.1144/SP292.21.CrossRefGoogle Scholar
  33. Mi, L., Jiang, H., Mou, S., Li, J., Pei, Y., and Liu, C. (2016). “Numerical simulation study of shale gas reservoir with stress-dependent fracture conductivity using multiscale discrete fracture network model.” Particulate Science and Technology, Vol. 36, pp. 1–10, DOI: 10.1080/02726351.2016.1241844.Google Scholar
  34. Min, K. B., Rutqvist, J., Tsang, C. F., and Jing, L. (2004). “Stress-dependent permeability of fractured rock masses: A numerical study.” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 7, pp. 1191–1210, DOI: 10.1016/j.ijrmms.2004.05.005.CrossRefGoogle Scholar
  35. Minkoff, S. E., Stone, C. M., Bryant, S., Peszynska, M., and Wheeler, M. F. (2003). “Coupled fluid flow and geomechanical deformation modeling.” Journal of Petroleum Science and Engineering, Vol. 38, No. 1, pp. 37–56, DOI: 10.1016/S0920-4105(03)00021-4.CrossRefGoogle Scholar
  36. Mohajerani, S., Baghbanan, A., Wang, G., and Forouhandeh, S. (2017). “An efficient algorithm for simulating grout propagation in 2D discrete fracture networks.” International Journal of Rock Mechanics and Mining Sciences, Vol. 98, pp. 67–77, DOI: 10.1016/j.ijrmms.2017.07.015.CrossRefGoogle Scholar
  37. Mohajerani, S., Huang, D., Wang, G., Jalali, S. M. E., and Torabi, S. R. (2018). “An efficient algorithm for generation of conforming mesh for three-dimensional discrete fracture networks.” Engineering Computations, in press.Google Scholar
  38. Monteagudo, J. and Firoozabadi, A. (2004). “Control volume method for numerical simulation of two phase immiscible flow in two-and three-dimensional discrete fractured media.” Water Resources Research, Vol. 40, No. 7, DOI: 10.1029/2003WR002996.Google Scholar
  39. Mustapha, H., Dimitrakopoulos, R., Graf, T., and Firoozabadi, A. (2011). “An efficient method for discretizing 3D fractured media for subsurface flow and transport simulations.” International Journal for Numerical Methods in Fluids, Vol. 67, No. 5, pp. 651–670, DOI: 10.1002/fld.2383.CrossRefzbMATHGoogle Scholar
  40. Noorishad, J., Ayatollahi, M., and Witherspoon, P. (1982). “A finiteelement method for coupled stress and fluid flow analysis in fractured rock masses.” International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, Vol. 19, No. 4, pp. 185–193, DOI: 10.1016/0148-9062(82)90888-9.CrossRefGoogle Scholar
  41. Noorishad, J., Tsang, C. F., and Witherspoon, P. (1992). “Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—1. Development and verification of a numerical simulator.” International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, Vol. 29, pp. 401–409, DOI: 10.1016/0148-9062(92)90515-2.CrossRefGoogle Scholar
  42. Oda, M. (1986). “An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses.” Water Resources Research, Vol. 22, No. 13, pp. 1845–1856, DOI: 10.1029/WR022i013p01845.CrossRefGoogle Scholar
  43. Öhman, J., Niemi, A., and Tsang, C. F. (2005). “Probabilistic estimation of fracture transmissivity from wellbore hydraulic data accounting for depth-dependent anisotropic rock stress.” International Journal of Rock Mechanics and Mining Sciences, Vol. 42, No. 5, pp. 793–804, DOI: 10.1016/j.ijrmms.2005.03.016.CrossRefGoogle Scholar
  44. Priest, S. D. (2012). Discontinuity analysis for rock engineering. Springer, Netherlands, DOI: 10.1007/978-94-011-1498-1.Google Scholar
  45. Raghavan, R. and Chin, L. (2002). “Productivity changes in reservoirs with stress-dependent permeability.” SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. DOI: 10.2118/88870-PA.Google Scholar
  46. Rutqvist, J., Noorishadm J., Stephansson, O., and Tsang, C. F. (1992). “Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—2. Field experiment and modelling.” International Journal of Rock Mechanics and Mining Sciences, Vol. 29, pp. 411–419, DOI: 10.1016/0148-9062(92)90515-2.CrossRefGoogle Scholar
  47. Rutqvist, J. and Stephansson, O. (2003). “The role of hydromechanical coupling in fractured rock engineering.” Hydrogeology J, Vol. 11, No. 1, pp. 7–40, DOI: 10.1007/s10040-002-0241-5.CrossRefGoogle Scholar
  48. Somerton, W. H., Söylemezo lu, I., and Dudley, R. (1975). “Effect of stress on permeability of coal.” International Journal of Rock Mechanics and Mining Sciences, Vol. 12, pp. 129–145, DOI: 10.1016/0148-9062(75)91244-9.CrossRefGoogle Scholar
  49. Son, M. and Moon, H. K. (2017). “The hydraulic stability assessment of jointed rock mass by analysis of stress path due to underground excavation.” KSCE Journal of Civil Engineernig, Vol 21, Issue 6, pp. 2450–2458, DOI: 10.1007/s12205-016-1017-0.CrossRefGoogle Scholar
  50. Vairogs, J., Hearn, C., Dareing, D. W., and Rhoades. V. (1971). “Effect of rock stress on gas production from low-permeability reservoirs.” Journal of Petroleum Technology, Vol 23, No. 9, pp. 161–161, 167, DOI: 10.2118/3001-PA.CrossRefGoogle Scholar
  51. Vermilye, J. M. and Scholz, C. H. (1995). “Relation between vein length and aperture.” Journal of Structural Geology, Vol. 17, No. 3, pp. 423–434, DOI: 10.1016/0191-8141(94)00058-8.CrossRefGoogle Scholar
  52. Xie, Y. and Wang, G. (2014). “A stabilized iterative scheme for coupled hydro-mechanical systems using reproducing kernel particle method.” International Journal for Numerical Methods in Engineering, Vol. 99, pp. 819–843, DOI: 10.1002/nme.4704.MathSciNetCrossRefzbMATHGoogle Scholar
  53. Xie, N., Yang, J., and Shao, J. (2015). “Study on the hydromechanical behavior of single fracture under normal stresses.” KSCE Journal of Civil Engineering, Vol. 18, No. 6, pp. 1641–1649, DOI: 10.1007/s12205-014-0490-6.CrossRefGoogle Scholar
  54. Xu, C. and Dowd, P. (2010). “A new computer code for discrete fracture network modelling.” Computers & Geosciences, Vol. 36, No. 3, pp. 292–301, DOI: 10.1016/j.cageo.2009.05.012.CrossRefGoogle Scholar
  55. Ye, J. H., Huang, D., and Wang, G. (2016). “Nonlinear dynamic simulation of offshore breakwater on sloping liquefied seabed.” Bulletin of Engineering Geology and the Environment, Vol. 75, pp. 1215–1225, DOI: 10.1007/s10064-016-0906-2.CrossRefGoogle Scholar
  56. Ye, J. H. and Wang, G. (2016). “Numerical simulation of the seismic liquefaction mechanism in an offshore loosely deposited seabed.” Bulletin of Engineering Geology and the Environment, Vol. 75, pp. 1183–1197, DOI: 10.1007/s10064-015-0803-0.CrossRefGoogle Scholar
  57. Zareifard, M. R. and Fahimifar, A. (2016). “A simplified solution for stresses around lined pressure tunnels considering non-radial symmetrical seepage flow.” KSCE Journal of Civil Engineering, Vol. 20, No. 7, pp. 2640–2654, DOI: 10.1007/s12205-016-0105-5.CrossRefGoogle Scholar
  58. Zhang, J., Standifird, W., Roegiers, J. C., and Zhang, Y. (2007). “Stressdependent fluid flow and permeability in fractured media: From lab experiments to engineering applications.” Rock Mechanics and Rock Engineering, Vol. 40, No. 1, pp. 3–21, DOI: 10.1007/s00603-006-0103-xCrossRefGoogle Scholar
  59. Zhao, Z., Rutqvist, J., and Leung, C. (2015). “Impact of stress on solute transport in a fracture network: A comparison study.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5, No. 2, pp. 110–123, DOI: 10.1016/j.jrmge.2013.01.002.CrossRefGoogle Scholar
  60. Zimmerman, R. and Main, I. (2004). “Hydromechanical behavior of fractured rocks.” International Geophysics, Vol. 89, pp. 363–422, DOI: 10.1016/S0074-6142(03)80023-2.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Soheil Mohajerani
    • 1
  • Gang Wang
    • 2
    Email author
  • Duruo Huang
    • 3
  • S. M. E. Jalali
    • 4
  • S. R. Torabi
    • 4
  • Feng Jin
    • 3
  1. 1.Faculty of Mining, Petroleum and Geophysics EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Dept. of Civil and Environmental EngineeringHong Kong University of Science and Technology, Clear Water Bay, KowloonHong KongChina
  3. 3.Dept. of Hydraulic EngineeringTsinghua UniversityBeijingChina
  4. 4.Faculty of Mining, Petroleum and Geophysics EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations