KSCE Journal of Civil Engineering

, Volume 23, Issue 12, pp 5041–5050 | Cite as

Ultimate Lateral Bearing Capacity and Group Effect of Belled Wedge Pile Groups

  • Gangqiang KongEmail author
  • Huaifeng Peng
  • Hongyu Qin
  • Lehua Wang
  • Yongdong Meng
Geotechnical Engineering


Pile foundation of ports, high-voltage transmission line tower are subjected to amount of lateral loading, prediction on lateral bearing capacity is one of the most important projects in structure design. This paper pertains to the model tests on pile-soil interaction of single pile, 2 × 1 and 2 × 2 belled wedge pile groups embedded in sand under lateral load. The load versus displacement, and the soil pressures along depth surrounding piles are measured, the ultimate lateral bearing capacities and group effects of belled wedge piles are analyzed and discussed. An simplified theoretical calculation method on predicting the lateral bearing capacities of shaped pile groups with considering group pile p-y curves, and longitudinal cross-section variation are proposed. The accuracy and reliability of this developed calculation method are verified through the comparative analysis with model test results obtained in this study and previous literature. The predicted values of lateral bearing capacities have suitable agreement with the measured data. It also shows that the ultimate lateral bearing capacities of belled wedge pile group are nearly 1.8–2.0 times of those of traditional belled pile with the same concrete usage in this study’s condition.


pile group lateral load group effect p-y curves model test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support from the National Science Foundation of China (No. 51778212).


  1. Choi, J., Kim, M., and Brandenberg, S. (2015). “Cyclic p-y plasticity model applied to pile foundations in sand.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 142, No. 6, p. 08216001, DOI: Scholar
  2. Cihan, K. (2014). “Effect of the propeller jet on pile groups.” China Ocean Eng., Vol. 28, No. 1, pp. 17–30, DOI: Scholar
  3. Fan, C. C. and Long, J. H. (2007). “A modulus-multiplier approach for non-linear analysis of laterally loaded pile groups.” Int. J. Numer. Anal. Meth. Geomech., Vol. 31, No. 9, pp. 1117–1145, DOI: Scholar
  4. Gandhi, S. R. and Selvam, S. (1997). “Group effect on driven piles under lateral load.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 123, No. 8, pp. 702–709, DOI: Scholar
  5. Gao, G. Y., Gao, M., Chen, Q. S., and Yang, J. (2019). “Field load testing study of vertical bearing behavior of a large diameter belled cast-in-place pile.” KSCE J. Civ. Eng., KSCE, Vol. 23, No. 5, pp. 2009–2016, DOI: Scholar
  6. JGJ 94 (2008). Technical code for building pile foundations, JTS-167-4-2012, China Building Industry Press, Beijing, China.Google Scholar
  7. JGJ 106 (2014). Technical code for testing of building foundation piles, JGJ 106-2014, China Building Industry Press, Beijing, China.Google Scholar
  8. JTS 167-4 (2012). Code for pile foundation of harbor engineering, JTS-167-4-2012, China Building Industry Press, Beijing, China.Google Scholar
  9. Kong, L. G., Chen, R. P., and Wang, S. H., and Chen, Y. M. (2015a). “Response of 3 × 3 pile groups in silt subjected to eccentric lateral loading.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 141, No. 7, pp. 04015029, DOI: Scholar
  10. Kong, G. Q., Wu, D., Liu, H. L., Laloui, L., Cheng, X. H., and Zhu, X. (2019). “Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger.” International Journal of Energy Research, Vol. 43, No. 1, pp. 596–603, DOI: Scholar
  11. Kong, G. Q., Yang, Q., Liu, H. L., and Liang, R. Y. (2013). “Numerical study of a new belled wedge pile type under different loading modes.” Eur. J. Environ. Civ. Eng., Vol. 17, No. S1, pp. 65–82, DOI: Scholar
  12. Kong, G. Q., Zhou, H., Cao, Z. H., and Ding, X. M. (2015b). “Measuring effects of X-section pile installation in soft clay.” Proc. ICE - Geotech. Eng., Vol. 168, No. 4, pp. 296–305, DOI: Scholar
  13. Lemnitzer, A., Khalili-Tehrani, P., Ahlberg, E. R., and Rha, C., Taciroglu, E., Wallace, J. W., and Stewart, J. P. (2010). “Nonlinear efficiency of bored pile group under lateral loading.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 136, No. 12, pp. 1673–1685, DOI: Scholar
  14. Lin, H., Ni, L., and Suleiman, M. T. (2015). “Interaction between laterally loaded pile and surrounding soil.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 141, No. 4, p. 04014119, DOI: Scholar
  15. Liu, H. L., Kong, G. Q., Ding, X. M., and Chen, Y. M. (2013). “Performances of large-diameter cast-in place concrete pipe pile and pile group under lateral load.” J. Perform. Constr. Fac., ASCE, Vol. 27, No. 2, pp. 191–202, DOI: Scholar
  16. Motta, E. (2012). “Lateral deflection of horizontally loaded rigid piles in elastoplastic medium.” J. Geotech. Geoenviron. Eng., ASCE, V o l. 139, No. 3, pp. 501–506, DOI: Scholar
  17. Ng, W. W. C., Zhang, L. M., and Nip, D. C. N. (2001). “Response of laterally loaded large-diameter bored pile groups.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 127, No. 8, pp. 658–669, DOI: Scholar
  18. Papadopoudou, M. C. and Comodromos, E. M. (2014). “Explicit extension of the p–y method to pile groups in sandy soils.” Comp. Geotech., Vol. 47, No. 3, pp. 28–41, DOI: Scholar
  19. Patra, N. R. and Pise, P. J. (2001). “Ultimate lateral resistance of pile groups in sand.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 127, No. 6, pp. 481–487, DOI: Scholar
  20. Petrasovits, G. and Award, A. (1972). “Ultimate lateral resistance of a rigid pile in cohesionless soil.” Proc., 5th European Conf. on Soil, The Spanish Society for Soil Mechanics and Foundation Engineering, Madrid, Spain, pp. 407–412.Google Scholar
  21. Qin, H. Y. and Guo, W. D. (2014). “Nonlinear response of laterally loaded rigid piles in sand.” Geomech. Eng., Vol. 7, No. 6, pp. 679–703, DOI: Scholar
  22. Randolph, M. F. (1981). “The response of flexible piles to lateral loading.” Géotechnique, Vol. 31, No. 2, pp. 247–259, DOI: Scholar
  23. Rollins, K. M., Lane, D. J., and Gerber, T. M. (2005). “Measured and computed lateral response of a pile group in sand.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 131, No. 1, pp. 103–114, DOI: Scholar
  24. Rollins, K. M., Olsen, K. G., Jensen, D. H., Garrett, B. H., Olsen, R. J., and Egbert, J. J. (2006). “Pile spacing effects on lateral pile group behavior: Analysis.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 132, No. 10, pp. 1272–1283, DOI: Scholar
  25. Suleiman, M. T., Ni, L., Raich, A., Helm, J. D., and Ghazanfari, E. (2015). “Measured soil-structure interaction for concrete piles subjected to lateral loading.” Can. Geotech. J., Vol. 52, No. 8, pp. 1168–1179, DOI: Scholar
  26. Suleiman, M. T., Vande Voort, T., and Sritharan, S. (2010). “Behavior of driven ultrahigh-performance concrete H-piles subjected to vertical and lateral loadings.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 136, No. 10, pp. 1403–1413, DOI: Scholar
  27. Wang, W. D., Zhu, W. L., Chen, Z., Weng, Q. P., and Wu, J. B. (2008). “Design, study and practice of deep cylindrical excavation of Shanghai World Expo 500 kV underground transmission substation project.” Chinese J. Geotech. Eng., Vol. 30, No. S1, pp. 564–576 (in Chinese).Google Scholar
  28. Xia, B., Zhang, L. M., Zhou, L. R., He, Y. Y., and Zhu, L. (2015). “Field lateral load tests on slope-stabilization grouted pipe pile groups.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 141, No. 4, p. 04014124, DOI:
  29. Xu, X. T., Liu, H. L., and Lehane, B. M. (2006). “Pipe pile installation effects in soft clay.” Proc. ICE- Geotech. Eng., Vol. 159, No. 4, pp. 285–296, DOI: Scholar
  30. Yao, Y. P., Hou, W., and Zhou, A. N. (2009). “UH model: Three-dimensional unified hardening model for overconsolidated clays.” Geotechnique, Vol. 59, No. 5, pp. 451–469, DOI: Scholar
  31. Yao, Y. P., Sun, D. A., and Matsuoka, H. (2008). “A unified constitutive model for both clay and sand with hardening parameter independent on stress path.” Computers and Geotechnics, Vol. 35, No. 2, pp. 210–222, DOI: Scholar
  32. Yao, Y. P. and Zhou, A. N. (2013). “Non-isothermal unified hardening model: A thermo-elasto-plastic model for clays.” Geotechnique, Vol. 63, No. 15, pp. 1328–1345, DOI: Scholar
  33. Zhou, H., Kong, G. Q., Liu, H. L., and Laloui, L. (2018). “Similarity solution for cavity expansion in thermoplastic soil.” Int. J. Numer. Anal. Met., Vol. 42, No. 2, pp. 274–294, DOI: Scholar
  34. Zhu, B., Sun, Y. X., Chen, R. P., Guo, W. D., and Yang, Y. Y. (2015). “Experimental and analytical models of laterally loaded rigid monopiles with hardening p-y curves.” J. Waterw. Port C, ASCE, Vol. 141, No. 6, pp. 04015007, DOI: Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of EducationChina Three Gorges UniversityYichangChina
  2. 2.College of Civil and Transportation EngineeringHohai UniversityNanjingChina
  3. 3.School of Computer Science, Engineering and MathematicsFlinders UniversityAdelaideAustralia
  4. 4.College of Hydraulic & Environmental EngineeringChina Three Gorges UniversityYichangChina

Personalised recommendations