Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography

  • Sergey Yu. Ksenofontov
  • Pavel A. ShilyaginEmail author
  • Dmitry A. Terpelov
  • Valentin M. Gelikonov
  • Grigory V. Gelikonov
Research Article


A numerical method that compensates image distortions caused by random fluctuations of the distance to an object in spectral-domain optical coherence tomography (SD OCT) has been proposed and verified experimentally. The proposed method is based on the analysis of the phase shifts between adjacent scans that are caused by micrometer-scale displacements and the subsequent compensation for the displacements through phase-frequency correction in the spectral space. The efficiency of the method is demonstrated in model experiments with harmonic and random movements of a scattering object as well as during in vivo imaging of the retina of the human eye.


optical coherence tomography (OCT) motion artifact correction retinal imaging numerical method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the State task for IAP RAS (project No. 0035-2019-0013) in part of method development by the Russian scientific foundation (project No. 17-15-01507) in part of model experiments and setup creating, the Russian Federal target program (project 14.610.21.0014 unique No. RFMEFI61017X0014) in part of retinal imaging experiments.


  1. 1.
    Fercher A F, Hitzenberger C K, Kamp G, El-Zaiat S Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1–2): 43–48CrossRefGoogle Scholar
  2. 2.
    Gelikonov V M, Gelikonov G V, Terpelov D A, Shilyagin P A. Electronic interface systems for goals of spectral domain optical coherence tomography. Instruments and Experimental Techniques, 2012, 55(3): 392–398CrossRefGoogle Scholar
  3. 3.
    Rajabi H, Zirak A. Speckle noise reduction and motion artifact correction based on modified statistical parameters estimation in OCT images. Biomedical Physics & Engineering Express, 2016, 2 (3): e035012CrossRefGoogle Scholar
  4. 4.
    Kang W, Wang H, Wang Z, Jenkins M W, Isenberg G A, Chak A, Rollins A M. Motion artifacts associated with in vivo endoscopic OCT images of the esophagus. Optics Express, 2011, 19(21): 20722–20735CrossRefGoogle Scholar
  5. 5.
    de Kinkelder R, Kalkman J, Faber D J, Schraa O, Kok P H B, Verbraak F D, van Leeuwen T G. Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina. Investigative Ophthalmology & Visual Science, 2011, 52(6): 3908–3913CrossRefGoogle Scholar
  6. 6.
    Zawadzki R J, Miller D T. Retinal AO OCT. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. 2nd ed. Switzerland: Springer International Publishing, 2015, 1849–1920CrossRefGoogle Scholar
  7. 7.
    Gelikonov V M, Gelikonov G V, Shilyagin P A. Optimization of Fizeau-based optical coherence tomography with a reference michelson interferometer. Bulletin of the Russian Academy of Sciences. Physics, 2008, 72(1): 93–97Google Scholar
  8. 8.
    Kraus M F, Potsaid B, Mayer M A, Bock R, Baumann B, Liu J J, Hornegger J, Fujimoto J G. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomedical Optics Express, 2012, 3(6): 1182–1199CrossRefGoogle Scholar
  9. 9.
    Kraus M F, Liu J J, Schottenhamml J, Chen C L, Budai A, Branchini L, Ko T, Ishikawa H, Wollstein G, Schuman J, Duker J S, Fujimoto J G, Hornegger J. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomedical Optics Express, 2014, 5(8): 2591–2613CrossRefGoogle Scholar
  10. 10.
    Chen Z, Shen Y, Bao W, Li P, Wang X, Ding Z. Motion correction using overlapped data correlation based on a spatial-spectral encoded parallel optical coherence tomography. Optics Express, 2017, 25(6): 7069–7083CrossRefGoogle Scholar
  11. 11.
    Chen Y, Hong Y J, Makita S, Yasuno Y. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning. Biomedical Optics Express, 2018, 9(3): 1111–1129CrossRefGoogle Scholar
  12. 12.
    Potsaid B, Gorczynska I, Srinivasan V J, Chen Y, Jiang J, Cable A, Fujimoto J G. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70000 to 312500 axial scans per second. Optics Express, 2008, 16(19): 15149–15169CrossRefGoogle Scholar
  13. 13.
    Lezama J, Mukherjee D, McNabb R P, Sapiro G, Kuo A N, Farsiu S. Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes. Biomedical Optics Express, 2016, 7(12): 4827–4846CrossRefGoogle Scholar
  14. 14.
    Camino A, Zhang M, Dongye C, Pechauer A D, Hwang T S, Bailey S T, Lujan B, Wilson D J, Huang D, Jia Y. Automated registration and enhanced processing of clinical optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2016, 6(4): 391–401CrossRefGoogle Scholar
  15. 15.
    Baghaie A, Yu Z, D’Souza R M. Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution? Medical Image Analysis, 2017, 37: 129–145CrossRefGoogle Scholar
  16. 16.
    Camino A, Zhang M, Gao S S, Hwang T S, Sharma U, Wilson D J, Huang D, Jia Y. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomedical Optics Express, 2016, 7(10): 3905–3915CrossRefGoogle Scholar
  17. 17.
    Lang A, Carass A, Al-Louzi O, Bhargava P, Solomon S D, Calabresi P A, Prince J L. Combined registration and motion correction of longitudinal retinal OCT data. In: Proceedings of SPIE, Volume 9784, Medical Imaging 2016: Image Processing. San Diego: SPIE, 2016, 97840XGoogle Scholar
  18. 18.
    Watanabe Y, Takahashi Y, Numazawa H. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. Journal of Biomedical Optics, 2013, 19(2): 021105CrossRefGoogle Scholar
  19. 19.
    Shemonski N D, Ahn S S, Liu Y Z, South F A, Carney P S, Boppart S A. Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. Biomedical Optics Express, 2014, 5(12): 4131–1143CrossRefGoogle Scholar
  20. 20.
    Lee J, Srinivasan V, Radhakrishnan H, Boas D A. Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex. Optics Express, 2011, 19(22): 21258–21270CrossRefGoogle Scholar
  21. 21.
    Carrasco-Zevallos O M, Nankivil D, Viehland C, Keller B, Izatt J A. Pupil tracking for real-time motion corrected anterior segment optical coherence tomography. PLoS One, 2016, 11(8): e0162015CrossRefGoogle Scholar
  22. 22.
    Braaf B, Vienola K V, Sheehy C K, Yang Q, Vermeer K A, Tiruveedhula P, Arathorn D W, Roorda A, de Boer J F. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomedical Optics Express, 2013, 4(1): 51–65CrossRefGoogle Scholar
  23. 23.
    Montuoro A, Wu J, Waldstein S, Gerendas B, Langs G, Simader C, Schmidt-Erfurth U. Motion artefact correction in retinal optical coherence tomography using local symmetry. In: Proceedings of MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention. Boston: Springer, 2014, 17, 130–137Google Scholar
  24. 24.
    Hu Z, Rollins A M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Optics Letters, 2007, 32 (24): 3525–3527CrossRefGoogle Scholar
  25. 25.
    Gelikonov V M, Gelikonov G V, Shilyagin P A. Linearwavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(3): 459–465CrossRefGoogle Scholar
  26. 26.
    Shilyagin P A, Ksenofontov S Y, Moiseev A A, Terpelov D A, Matkivsky V A, Kasatkina I V, Mamaev Y A, Gelikonov G V, Gelikonov V M. Equidistant recording of the spectral components in ultra-wideband spectral-domain optical coherence tomography. Radiophysics and Quantum Electronics, 2018, 60(10): 769–778CrossRefGoogle Scholar
  27. 27.
    Terpelov D A, Ksenofontov S Y, Gelikonov G V, Gelikonov V M, Shilyagin P A. A data-acquisition and control system for spectral-domain optical coherence tomography with a speed of 91 912 A-scans/s based on a USB 3.0 interface. Instruments and Experimental Techniques, 2017, 60(6): 868–874CrossRefGoogle Scholar
  28. 28.
    Leitgeb R A, Wojtkowski M. Complex and coherence-noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and applications. 2nd ed. Switzerland: Springer International Publishing, 2015, 195–224CrossRefGoogle Scholar
  29. 29.
    Gelikonov V M, Gelikonov G V, Kasatkina I V, Terpelov D A, Shilyagin P A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106 (6): 895–900CrossRefGoogle Scholar
  30. 30.
    Ai J, Wang L V. Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography. Optics Letters, 2005, 30(21): 2939–2941CrossRefGoogle Scholar
  31. 31.
    Leitgeb R A, Hitzenberger C K, Fercher A F, Bajraszewski T. Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Optics Letters, 2003, 28(22): 2201–2203CrossRefGoogle Scholar
  32. 32.
    Zhang J, Nelson J S, Chen Z. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Optics Letters, 2005, 30(2): 147–149CrossRefGoogle Scholar
  33. 33.
    Matkivsky V A, Moiseev A A, Ksenofontov S Y, Kasatkina I V, Gelikonov G V, Shabanov D V, Shilyagin P A, Gelikonov V M. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography. Frontiers of Optoelectronics, 2017, 10(3): 323–328CrossRefGoogle Scholar
  34. 34.
    Gelikonov G V, Gelikonov V M. Measurement and compensation for the amplitude and phase spectral distortions of an interference signal in optical coherence tomography for the relative optical-spectrum width exceeding 10%. Radiophysics and Quantum Electronics, 2018, 61(2): 135–145CrossRefGoogle Scholar
  35. 35.
    Matveev L A, Zaitsev V Y, Gelikonov G V, Matveyev A L, Moiseev A A, Ksenofontov S Y, Gelikonov V M, Sirotkina M A, Gladkova N D, Demidov V, Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472–1475CrossRefGoogle Scholar
  36. 36.
    Moiseev A, Ksenofontov S, Sirotkina M, Kiseleva E, Gorozhantseva M, Shakhova N, Matveev L, Zaitsev V, Matveyev A, Zagaynova E, Gelikonov V, Gladkova N, Vitkin A, Gelikonov G. Optical coherence tomography-based angiography device with realtime angiography B-scans visualization and hand-held probe for everyday clinical use. Journal of Biophotonics, 2018, 11(10): e201700292CrossRefGoogle Scholar
  37. 37.
    Huo L, Xi J, Wu Y, Li X. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Optics Express, 2010, 18(14): 14375–14384CrossRefGoogle Scholar
  38. 38.
    Moon S, Lee S W, Rubinstein M, Wong B J F, Chen Z. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Optics Express, 2010, 18(20): 21183–21197CrossRefGoogle Scholar
  39. 39.
    Park H C, Seo Y H, Jeong K H. Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation. Optics Express, 2014, 22(5): 5818–5825CrossRefGoogle Scholar
  40. 40.
    Chen Y, Hong Y J, Makita S, Yasuno Y. Three-dimensional eye motion correction by Lissajous scan optical coherence tomography. Biomedical Optics Express, 2017, 8(3): 1783–1802CrossRefGoogle Scholar
  41. 41.
    Chauhan B C, Stevens K T, Levesque J M, Nuschke A C, Sharpe G P, O’Leary N, Archibald M L, Wang X. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS One, 2012, 7(6): e40352CrossRefGoogle Scholar
  42. 42.
    Taibbi G, Peterson G C, Syed M F, Vizzeri G. Effect of motion artifacts and scan circle displacements on Cirrus HD-OCT retinal nerve fiber layer thickness measurements. Investigative Ophthalmology & Visual Science, 2014, 55(4): 2251–2258CrossRefGoogle Scholar
  43. 43.
    Bezerra H G, Costa M A, Guagliumi G, Rollins A M, Simon D I. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC: Cardiovascular Interventions, 2009, 2(11): 1035–1046Google Scholar
  44. 44.
    Ksenofontov S, Vasilenkova T. Method of optimizing maximum intensity projection technique for rendering scalar three-dimensional data in static mode, in interactive mode and in real time. Patent of Russian Federation RU 2533055, 2014Google Scholar
  45. 45.
    Ksenofontov S Y. Application of the method of multiple mutual synchronization of parallel computational threads in spectral-domain optical coherent tomography systems. Instruments and Experimental Techniques, 2019, 62(3): 317–323CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sergey Yu. Ksenofontov
    • 1
    • 2
  • Pavel A. Shilyagin
    • 2
    Email author
  • Dmitry A. Terpelov
    • 2
  • Valentin M. Gelikonov
    • 2
  • Grigory V. Gelikonov
    • 2
  1. 1.BioMedTech LlcNizhny NovgorodRussia
  2. 2.Institute of Applied Physics of the Russian Academy of ScienceNizhny NovgorodRussia

Personalised recommendations