Ripening-resistance of Pd on TiO2(110) from first-principles kinetics

  • Qixin Wan
  • Hao Lin
  • Shuai Wang
  • Jiangnan DaiEmail author
  • Changqing Chen
Research Article


Suppressing sintering of supported particles is of importance for the study and application of metal-TiO2 system. Theoretical study of Ostwald ripening of TiO2(110)-supported Pd particles would be helpful to extend the understanding of the sintering. In this paper, based on density functional theory (DFT), the surface energy of Pd and the total activation energy (the sum of formation energy and diffusion barrier) of TiO2-supported Pd were calculated. Since the total activation energy is mainly contributed from the formation energy, it is indicated that the ripening of Pd particles would be in the interface control limit. Subsequently, the calculated surface energy and total activation energy were used to simulate Ostwald ripening of TiO2(110)-supported Pd particles. As a result, in comparison with larger particles, smaller particles would worsen the performance of ripening-resistance according to its lower onset temperature and shorter half-life time. The differences on ripening-resistance among different size particles could be mitigated along with the increase of temperature. Moreover, it is verified that the monodispersity can improve ripening resistance especially for the smaller particles. However, the different performances of the ripening originating from difference of the relative standard deviation are more obvious at higher temperature than lower temperature. This temperature effect for the relative standard deviation is the inverse of that for the initial main particle size. It is indicated that the influence of dispersity of TiO2(110)-supported Pd particles on ripening may be more sensitive at higher temperature. In this contribution, we extend the first principle kinetics to elaborate the ripening of Pd on TiO2(110). It is expected that the information from first principle kinetics would be helpful to the study in experiments.


first-principles Ostwald ripening Pd TiO2(110) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Key Project of Chinese National Development Programs (No. 2018YFB0406602), the National Natural Science Foundation of China (Grant No. 61774065). We thank Prof. W.-X. Li for fruitful discussions and S. Hu for the help of the ripening kinetics.


  1. 1.
    Diebold U. The surface science of titanium dioxide. Surface Science Reports, 2003, 48(5–8): 53–229CrossRefGoogle Scholar
  2. 2.
    Chen M S, Goodman D W. The structure of catalytically active gold on titania. Science, 2004, 306(5694): 252–255CrossRefGoogle Scholar
  3. 3.
    Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650CrossRefGoogle Scholar
  4. 4.
    Fu Q, Wagner T. Interaction of nanostructured metal overlayers with oxide surfaces. Surface Science Reports, 2007, 62(11): 431–498CrossRefGoogle Scholar
  5. 5.
    Diebold U, Pan J-M, Madey T E. Ultrathin metal film growth on TiO2(110): an overview. Surface Science, 1995, 331–333(Part B): 845–854CrossRefGoogle Scholar
  6. 6.
    Hu M, Noda S, Komiyama H. A new insight into the growth mode of metals on TiO2(110). Surface Science, 2002, 513(3): 530–538CrossRefGoogle Scholar
  7. 7.
    Persaud R, Madey T E. Chapter 11 Growth, structure and reactivity of ultrathin metal films on TiO2 surfaces. In: King D A, Woodruff D P, eds. Growth and Properties of Ultrathin Epitaxial Layers. The Chemical Physics of Solid Surfaces, 1997, 8: 407–447CrossRefGoogle Scholar
  8. 8.
    Park J B, Ratliff J S, Ma S, Chen D A. In situ scanning tunneling microscopy studies of bimetallic cluster growth: Pt–Rh on TiO2(110). Surface Science, 2006, 600(14): 2913–2923CrossRefGoogle Scholar
  9. 9.
    Lei Y, Liu H, Xiao W. First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Modelling and Simulation in Materials Science and Engineering, 2010, 18(2): 025004CrossRefGoogle Scholar
  10. 10.
    Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A, General, 2001, 212(1–2): 17–60CrossRefGoogle Scholar
  11. 11.
    Moulijn J A, van Diepen A E, Kapteijn F. Catalyst deactivation: is it predictable? what to do? Applied Catalysis A, General, 2001, 212 (1–2): 3–16CrossRefGoogle Scholar
  12. 12.
    Forzatti P, Lietti L. Catalyst deactivation. Catalysis Today, 1999, 52 (2-3): 165–181CrossRefGoogle Scholar
  13. 13.
    McCarty J G, Gusman M, Lowe D M, Hildenbrand D L, Lau K N. Stability of supported metal and supported metal oxide combustion catalysts. Catalysis Today, 1999, 47(1-4): 5–17CrossRefGoogle Scholar
  14. 14.
    Bugyi L, Óvári L, Kónya Z. The formation and stability of Rh nanostructures on TiO2(110) surface and TiOx encapsulation layers. Applied Surface Science, 2013, 280: 60–66CrossRefGoogle Scholar
  15. 15.
    Piwoński I, Spilarewicz-Stanek K, Kisielewska A, Kądzioła K, Cichomski M, Ginter J. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings. Applied Surface Science, 2016, 373: 38–44CrossRefGoogle Scholar
  16. 16.
    Madej E, Spiridis N, Socha R P, Wolanin B, Korecki J. The nucleation, growth and thermal stability of iron clusters on a TiO2(110) surface. Applied Surface Science, 2017, 416: 144–151CrossRefGoogle Scholar
  17. 17.
    Jak M J J, Konstapel C, van Kreuningen A, Verhoeven J, Frenken J W M. Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2(110). Surface Science, 2000, 457(3): 295–310CrossRefGoogle Scholar
  18. 18.
    Stone P, Bennett R A, Poulston S, Bowker M. Scanning tunnelling microscopy and Auger electron spectroscopy study of Pd on TiO2(110). Surface Science, 1999, 433–435(2): 501–505CrossRefGoogle Scholar
  19. 19.
    Stone P, Poulston S, Bennett R A, Bowker M. Scanning tunnelling microscopy investigation of sintering in a model supported catalyst: nanoscale Pd on TiO2(110). Chemical Communications, 1998, 13: 1369–1370CrossRefGoogle Scholar
  20. 20.
    Howard A, Mitchell C E J, Egdell R G. Real time STM observation of Ostwald ripening of Pd nanoparticles on TiO2(110) at elevated temperature. Surface Science, 2002, 515(2 – 3): L504–L508CrossRefGoogle Scholar
  21. 21.
    Su Y Q, Liu J X, Filot I A W, Hensen E J M. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chemistry of Materials, 2017, 29(21): 9456–9462CrossRefGoogle Scholar
  22. 22.
    Hansen T W, Delariva A T, Challa S R, Datye A K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Accounts of Chemical Research, 2013, 46(8): 1720–1730CrossRefGoogle Scholar
  23. 23.
    Campbell C T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Accounts of Chemical Research, 2013, 46(8): 1712–1719CrossRefGoogle Scholar
  24. 24.
    Hu S, Li W X. Influence of particle size distribution on lifetime and thermal stability of Ostwald ripening of supported particles. ChemCatChem, 2018, 10(13): 2900–2907CrossRefGoogle Scholar
  25. 25.
    Wynblatt P, Gjostein N A. Supported metal crystallites. Progress in Solid State Chemistry, 1975, 9: 21–58CrossRefGoogle Scholar
  26. 26.
    Kang S B, Lim J B, Jo D, Nam I S, Cho B K, Hong S B, Kim C H, Oh S H. Ostwald-ripening sintering kinetics of Pd-based three-way catalyst: importance of initial particle size of Pd. Chemical Engineering Journal, 2017, 316: 631–644CrossRefGoogle Scholar
  27. 27.
    Goldsmith B R, Sanderson E D, Ouyang R, Li W X. CO- and NO-induced disintegration and redispersion of three-way catalysts rhodium, palladium, and platinum: an ab initio thermodynamics study. Journal of Physical Chemistry C, 2014, 118(18): 9588–9597CrossRefGoogle Scholar
  28. 28.
    Ouyang R, Liu J X, Li W X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. Journal of the American Chemical Society, 2013, 135 (5): 1760–1771CrossRefGoogle Scholar
  29. 29.
    Hu S, Li W X. Theoretical investigation of metal-support interactions on ripening kinetics of supported particles. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2018, 4(5): 510–517MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wan Q, Hu S, Dai J, Chen C, Li W X. First-principles kinetic study for Ostwald ripening of late transition metals on TiO2(110). Journal of Physical Chemistry C, 2019, 123(2): 1160–1169CrossRefGoogle Scholar
  31. 31.
    Vitos L, Ruban A V, Skriver H L, Kollár J. The surface energy of metals. Surface Science, 1998, 411(1 – 2): 186–202CrossRefGoogle Scholar
  32. 32.
    Zhao C, Wan Q, Dai J, Zhang J, Wu F, Wang S, Long H, Chen J, Chen C, Chen C. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation. Frontiers of Optoelectronics, 2017, 10 (4): 363–369CrossRefGoogle Scholar
  33. 33.
    Parker S C, Campbell C T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110). Physical Review B, 2007, 75(3): 035430CrossRefGoogle Scholar
  34. 34.
    Johnson C A. Generalization of the Gibbs-Thomson equation. Surface Science, 1965, 3(5): 429–444CrossRefGoogle Scholar
  35. 35.
    Parker S C, Campbell C T. Reactivity and sintering kinetics of Au/TiO2(110) model catalysts: particle size effects. Topics in Catalysis, 2007, 44(1–2): 3–13CrossRefGoogle Scholar
  36. 36.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169–11186CrossRefGoogle Scholar
  37. 37.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50CrossRefGoogle Scholar
  38. 38.
    Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B, 1993, 47(1): 558–561CrossRefGoogle Scholar
  39. 39.
    Feynman R P. Forces in molecules. Physical Review, 1939, 56(4): 340–343CrossRefzbMATHGoogle Scholar
  40. 40.
    Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413–7421CrossRefGoogle Scholar
  41. 41.
    Grant F A. Properties of rutile (titanium dioxide). Reviews of Modern Physics, 1959, 31(3): 646–674CrossRefGoogle Scholar
  42. 42.
    Kim H Y, Lee H M, Pala R G S, Shapovalov V, Metiu H. CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, and Mn. Journal of Physical Chemistry C, 2008, 112(32): 12398–12408CrossRefGoogle Scholar
  43. 43.
    Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985CrossRefGoogle Scholar
  44. 44.
    Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904CrossRefGoogle Scholar
  45. 45.
    Overbury S H, Bertrand P A, Somorjai G A. Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chemical Reviews, 1975, 75(5): 547–560CrossRefGoogle Scholar
  46. 46.
    Zhao W, Lin H, Li Y, Zhang Y, Huang X, Chen W. Growth mechanism of palladium clusters on rutile TiO2(110) surface. Journal of Natural Gas Chemistry, 2012, 21(5): 544–555CrossRefGoogle Scholar
  47. 47.
    Sanz J F, Márquez A. Adsorption of Pd atoms and dimers on the TiO2(110) surface: a first principles study. Journal of Physical Chemistry C, 2007, 111(10): 3949–3955CrossRefGoogle Scholar
  48. 48.
    Kittel C. Introduction to Solid State Physics. New York: John Wiley & Sons, 1966zbMATHGoogle Scholar
  49. 49.
    Lu H M, Li P Y, Cao Z H, Meng X K. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. Journal of Physical Chemistry C, 2009, 113(18): 7598–7602CrossRefGoogle Scholar
  50. 50.
    Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298 (5594): 811–814CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qixin Wan
    • 1
    • 2
  • Hao Lin
    • 3
    • 4
  • Shuai Wang
    • 1
  • Jiangnan Dai
    • 1
    Email author
  • Changqing Chen
    • 1
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory for Optoelectronics and Communication of Jiangxi ProvinceJiangxi Science and Technology Normal UniversityNanchangChina
  3. 3.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  4. 4.University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina

Personalised recommendations