Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 333–347 | Cite as

Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy

  • Xiaofan ZhangEmail author
  • Man Liu
  • Weiqian Kong
  • Hongbo Fan
Review Article
  • 22 Downloads

Abstract

Investigation on the mechanism and kinetics of charge transfer at semiconductor/electrolyte interface is significant for improving the photoelectric conversion efficiency and developing novel and high-efficiency photovoltaic devices. Scanning electrochemical microscopy (SECM), as a powerful analytical technique, has a potential advantage of high spatial and temporal resolution. It has been expanded into a broad range of research fields since the first inception of SECM in 1989 by Bard groups, which includes biological, enzymes, corrosion, energy conversion and storage (such as solar cells, hydrogen and battery). Herein, we review the basic principles and the development of SECM, and chiefly introduce the recent advances of SECM investigation in photoelectrochemical (PEC) cells including solar cells and PEC water splitting. These advances include rapid screening of photocatalysts/photoelectrodes, interfacial reaction kinetics and quantitation of reaction intermediates, which is significant for evaluating the performance, choosing catalysts and developing novel composite photoanodes and high efficiency devices. Finally, we briefly describe the development trends of SECM in energy research.

Keywords

scanning electrochemical microscopy (SECM) solar cells photoelectrochemical (PEC) water splitting screening kinetics intermediates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51602120), Natural Science Foundation of Education Department of Henan Province (No. 17A430023), and the opening project of Henan Provincial Key Laboratory of Nanocomposites and Applications (No. hkd20170106).

References

  1. 1.
    Holdren J P. Energy and sustainability. Science, 2007, 315(5813): 737CrossRefGoogle Scholar
  2. 2.
    Lianos P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 2017, 210: 235–254CrossRefGoogle Scholar
  3. 3.
    Li D, Shi J, Li C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: a mini review. Small, 2018, 14(23): 1704179CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38CrossRefGoogle Scholar
  5. 5.
    Klotz D, Grave D A, Dotan H, Rothschild A. Empirical analysis of the photoelectrochemical impedance response of hematite photoanodes for water photo-oxidation. Journal of Physical Chemistry Letters, 2018, 9(6): 1466–1472CrossRefGoogle Scholar
  6. 6.
    Wang M, Chen P, Humphry-Baker R, Zakeeruddin S M, Grätzel M. The influence of charge transport and recombination on the performance of dye-sensitized solar cells. ChemPhysChem, 2009, 10(1): 290–299CrossRefGoogle Scholar
  7. 7.
    Klotz D, Ellis D S, Dotan H, Rothschild A. Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Physical Chemistry Chemical Physics, 2016, 18(34): 23438–23457CrossRefGoogle Scholar
  8. 8.
    Tsyganok A, Klotz D, Malviya K D, Rothschild A, Grave D A. Different roles of Fe1–xNixOOH co-catalyst on hematite (a-Fe2O3) photoanodes with different dopants. ACS Catalysis, 2018, 8(4): 2754–2759CrossRefGoogle Scholar
  9. 9.
    Berera R, van Grondelle R, Kennis J T. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Research, 2009, 101(2-3): 105–118CrossRefGoogle Scholar
  10. 10.
    Pei G X, Wijten J H J, Weckhuysen B M. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2018, 20(15): 9806–9811CrossRefGoogle Scholar
  11. 11.
    Wang M, Alemu G, Shen Y. Scanning probe microscopy investigation of metal oxides nanocrystalline. In: Current Microscopy Contributions to Advances in Science and Technology, Chapter 3, 2012, 1377–1386Google Scholar
  12. 12.
    Esposito D V, Baxter J B, John J, Lewis N S, Moffat T P, Ogitsu T, O’Neil G D, Pham T A, Talin A A, Velazquez J M, Wood B C. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy & Environmental Science, 2015, 8(10): 2863–2885CrossRefGoogle Scholar
  13. 13.
    Cen J, Wu Q, Liu M, Orlov A. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress. Green Energy & Environment, 2017, 2(2): 100–111CrossRefGoogle Scholar
  14. 14.
    Miki T, Yanagi H. Scanning probe microscopic characterization of surface-modified n-TiO2 single-crystal electrodes. Langmuir, 1998, 14(12): 3405–3410CrossRefGoogle Scholar
  15. 15.
    Wierzbinski E, Szklarczyk M. Photoelectrochemical and in situ atomic force microscopy studies of films derived from o-methoxyaniline solution on gallium arsenide (100) photoelectrode. Thin Solid Films, 2003, 424(2): 191–200CrossRefGoogle Scholar
  16. 16.
    Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 2016, 7: 12012CrossRefGoogle Scholar
  17. 17.
    Economou N J, Mubeen S, Buratto S K, McFarland E W. Investigation of arrays of photosynthetically active heterostructures using conductive probe atomic force microscopy. Nano Letters, 2014, 14(6): 3328–3334CrossRefGoogle Scholar
  18. 18.
    Nakamura R, Nakato Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. Journal of the American Chemical Society, 2004, 126(4): 1290–1298CrossRefGoogle Scholar
  19. 19.
    Zandi O, Hamann T W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nature Chemistry, 2016, 8(8): 778–783CrossRefGoogle Scholar
  20. 20.
    McKelvey K, Nadappuram B P, Actis P, Takahashi Y, Korchev Y E, Matsue T, Robinson C, Unwin P R. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Analytical Chemistry, 2013, 85(15): 7519–7526CrossRefGoogle Scholar
  21. 21.
    Zampardi G, Klink S, Kuznetsov V, Erichsen T, Maljusch A, La Mantia F, Schuhmann W, Ventosa E. Combined AFM/SECM investigation of the solid electrolyte interphase in Li-ion batteries. Chemelectrochem, 2015, 2(10): 1607–1611CrossRefGoogle Scholar
  22. 22.
    Takahashi Y, Shevchuk A I, Novak P, Murakami Y, Shiku H, Korchev Y E, Matsue T. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. Journal of the American Chemical Society, 2010, 132(29): 10118–10126CrossRefGoogle Scholar
  23. 23.
    Baranski A, Diakowski P. Application of AC impedance techniques to scanning electrochemical microscopy. Journal of Solid State Electrochemistry, 2004, 8(10): 683–692CrossRefGoogle Scholar
  24. 24.
    Mirkin M, Fan F, Bard A. Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. Journal of Electroanalytical Chemistry, 1992, 328(1-2): 47–62Google Scholar
  25. 25.
    Bard A, Fan F, Kwak J, Lev O. Scanning electrochemical microscopy: introduction and principles. Analytical Chemistry, 1989, 61(3): 132–138CrossRefGoogle Scholar
  26. 26.
    Engstrom R, Pharr C. Scanning electrochemical microscopy. Analytical Chemistry, 1989, 61(19): 1099A–1104ACrossRefGoogle Scholar
  27. 27.
    Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chemical Reviews, 2016, 116(22): 13234–13278CrossRefGoogle Scholar
  28. 28.
    Rodriguez-López J, Alpuche-Aviles M A, Bard A J. Selective insulation with poly(tetrafluoroethylene) of substrate electrodes for electrochemical background reduction in scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(5): 1813–1818CrossRefGoogle Scholar
  29. 29.
    Rodríguez-López J. Surface interrogation mode of scanning electrochemical microscopy (SI-SECM): an approach to the study of adsorption and (electro)catalysis at electrodes. Electroanalytical Chemistry: A Series of Advances, 2012, 24: 287–341CrossRefGoogle Scholar
  30. 30.
    Zhang B, Xu X, Zhang X, Huang D, Li S, Zhang Y, Zhan F, Deng M, He Y, Chen W, Shen Y, Wang M. Investigation of dye regeneration kinetics in sensitized solar cells by scanning electrochemical microscopy. ChemPhysChem, 2014, 15(6): 1182–1189CrossRefGoogle Scholar
  31. 31.
    Weng Y, Hsiao K. Composition optimization of ZnO-based photocatalyst arrays by scanning electrochemical microscopy and the characterization of efficient photocatalysts. International Journal of Hydrogen Energy, 2015, 40(8): 3238–3248CrossRefGoogle Scholar
  32. 32.
    Li F, Ciani I, Bertoncello P, Unwin P R, Zhao J J, Bradbury C R, Fermin D J. Scanning electrochemical microscopy of redoxmediated hydrogen evolution catalyzed by two-dimensional assemblies of palladium nanoparticles. Journal of Physical Chemistry C, 2008, 112(26): 9686–9694CrossRefGoogle Scholar
  33. 33.
    Zhang B, Yuan H, Zhang X, Huang D, Li S, Wang M, Shen Y. Investigation of regeneration kinetics in quantum-dots-sensitized solar cells with scanning electrochemical microscopy. ACS Applied Materials & Interfaces, 2014, 6(23): 20913–20918CrossRefGoogle Scholar
  34. 34.
    Alemu G, Zhang B, Li J, Xu X, Cui J, Shen Y, Wang M. Investigation of dye-regeneration kinetics at dye-sensitized p-type CuCrO2 film/electrolytes interface with scanning electrochemical microscopy. Nano, 2014, 9(5): 1440008CrossRefGoogle Scholar
  35. 35.
    Martin C, Bozic-Weber B, Constable E, Glatzel T, Housecroft C, Wright I. Development of scanning electrochemical microscopy (SECM) techniques for the optimization of dye sensitized solar cells. Electrochimica Acta, 2014, 119: 86–91CrossRefGoogle Scholar
  36. 36.
    Schmidt I, Plettenberg I, Kimmich D, Ellis H, Witt J, Dosche C, Wittstock G. Spatially resolved analysis of screen printed photoanodes of dye-sensitized solar cells by scanning electrochemical microscopy. Electrochimica Acta, 2016, 222: 735–746CrossRefGoogle Scholar
  37. 37.
    Shen Y, Träuble M, Wittstock G. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(3): 750–759CrossRefGoogle Scholar
  38. 38.
    Li H, Du M, Mleczko M J, Koh A L, Nishi Y, Pop E, Bard A J, Zheng X. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. Journal of the American Chemical Society, 2016, 138 (15): 5123–5129CrossRefGoogle Scholar
  39. 39.
    Jung C, Sánchez-Sánchez CM, Lin C L, Rodríguez-López J, Bard A J. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Analytical Chemistry, 2009, 81(16): 7003–7008CrossRefGoogle Scholar
  40. 40.
    Sánchez-Sánchez C M, Rodríguez-López J, Bard A J. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Analytical Chemistry, 2008, 80(9): 3254–3260Google Scholar
  41. 41.
    Ventosa E, Schuhmann W. Scanning electrochemical microscopy of Li-ion batteries. Physical Chemistry Chemical Physics, 2015, 17 (43): 28441–28450CrossRefGoogle Scholar
  42. 42.
    Xu F, Beak B, Jung C. In situ electrochemical studies for Li + ions dissociation from the LiCoO2 electrode by the substrate-generation/tip-collection mode in SECM. Journal of Solid State Electrochemistry, 2012, 16(1): 305–311CrossRefGoogle Scholar
  43. 43.
    Bülter H, Peters F, Schwenzel J, Wittstock G. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angewandte Chemie, 2014, 53(39): 10531–10535CrossRefGoogle Scholar
  44. 44.
    Sumboja A, Tefashe U, Wittstock G, Lee P S. Investigation of charge transfer kinetics of polyaniline supercapacitor electrodes by scanning electrochemical microscopy. Advanced Materials Interfaces, 2015, 2(1): 1400154CrossRefGoogle Scholar
  45. 45.
    Zhang Q, Ye Z, Zhu Z, Liu X, Zhang J, Cao F. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corrosion Science, 2018, 139: 403–409CrossRefGoogle Scholar
  46. 46.
    Lee J, Ye H, Pan S, Bard A J. Screening of photocatalysts by scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(19): 7445–7450CrossRefGoogle Scholar
  47. 47.
    Sreekanth N, Phani K L. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chemical Communications (Cambridge, England), 2014, 50(76): 11143–11146CrossRefGoogle Scholar
  48. 48.
    Rodríguez-López J, Bard A J. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum. Journal of the American Chemical Society, 2010, 132(14): 5121–5129CrossRefGoogle Scholar
  49. 49.
    Fernández J L, White JM, Sun Y, Tang W, Henkelman G, Bard A J. Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods. Langmuir, 2006, 22 (25): 10426–10431CrossRefGoogle Scholar
  50. 50.
    Jantz D, Leonard K. Characterizing electrocatalysts with scanning electrochemical microscopy. Industrial & Engineering Chemistry Research, 2018, 57(22): 7431–7440CrossRefGoogle Scholar
  51. 51.
    Li Y, Ning X, Ma Q, Qin D, Lu X. Recent advances in electrochemistry by scanning electrochemical microscopy. Trends in Analytical Chemistry, 2016, 80: 242–254CrossRefGoogle Scholar
  52. 52.
    Rincón M E, Trujillo M E, Ávalos J, Casillas N. Photoelectrochemical processes at interfaces of nanostructured TiO2/carbon black composites studied by scanning photoelectrochemical microscopy. Journal of Solid State Electrochemistry, 2007, 11(9): 1287–1294CrossRefGoogle Scholar
  53. 53.
    Bozic B, Figgemeier E. Scanning electrochemical microscopy under illumination: an elegant tool to directly determine the mobility of charge carriers within dye-sensitized nanostructured semiconductors. Chemical Communications (Cambridge, England), 2006, 21 (21): 2268–2270CrossRefGoogle Scholar
  54. 54.
    Tefashe U M, Loewenstein T, Miura H, Schlettwein D, Wittstock G. Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. Journal of Electroanalytical Chemistry, 2010, 650(1): 24–30CrossRefGoogle Scholar
  55. 55.
    Tefashe U M, Rudolph M, Miura H, Schlettwein D, Wittstock G. Photovoltaic characteristics and dye regeneration kinetics in D149-sensitized ZnO with varied dye loading and film thickness. Physical Chemistry Chemical Physics, 2012, 14(20): 7533–7542CrossRefGoogle Scholar
  56. 56.
    Tefashe U M, Nonomura K, Vlachopoulos N, Hagfeldt A, Wittstock G. Effect of cationon dye regeneration kinetics of N719-sensitized TiO2 films in acetonitrile-based and ionic-liquid-based electrolytes investigated by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2012, 116(6): 4316–4323CrossRefGoogle Scholar
  57. 57.
    Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Photoelectrochemical kinetics of eosin y-sensitized zinc oxide films investigated by scanning electrochemical microscopy. Chemistry (Weinheim an der Bergstrasse, Germany), 2006, 12(22): 5832–5839Google Scholar
  58. 58.
    Shen Y, Tefashe U M, Nonomura K, Loewenstein T, Schlettwein D, Wittstock G. Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED. Electrochimica Acta, 2009, 55(2): 458–464CrossRefGoogle Scholar
  59. 59.
    Xu X, Zhang B, Cui J, Xiong D, Shen Y, Chen W, Sun L, Cheng Y, Wang M. Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale, 2013, 5(17): 7963–7969CrossRefGoogle Scholar
  60. 60.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051CrossRefGoogle Scholar
  61. 61.
    Hsu H, Ji L, Du M, Zhao J, Yu E, Bard A. Optimization of PbI2/MAPbI3 perovskite composites by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2016, 120(35): 19890–19895CrossRefGoogle Scholar
  62. 62.
    Alemu G, Li J, Cui J, Xu X, Zhang B, Cao K, Shen Y, Cheng Y, Wang M. Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9216–9222CrossRefGoogle Scholar
  63. 63.
    Jang J, Lee J, Ye H, Fan F, Bard A. Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. Journal of Physical Chemistry C, 2009, 113(16): 6719–6724CrossRefGoogle Scholar
  64. 64.
    Currao A. Photoelectrochemical water splitting. Chimia, 2007, 61 (12): 815–819CrossRefGoogle Scholar
  65. 65.
    Acar C, Dincer I, Zamfirescu C. A review on selected heterogeneous photocatalysts for hydrogen production. International Journal of Energy Research, 2014, 38(15): 1903–1920CrossRefGoogle Scholar
  66. 66.
    Acar C, Dincer I. A review and evaluation of photoelectrode coating materials and methods for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2016, 41(19): 7950–7959CrossRefGoogle Scholar
  67. 67.
    Shi Q, Murcia-López S, Tang P, Flox C, Morante J, Bian Z, Wang H, Andreu T. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catalysis, 2018, 8(4): 3331–3342CrossRefGoogle Scholar
  68. 68.
    Yang Y, Niu S, Han D, Liu T, Wang G, Li Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Advanced Energy Materials, 2017, 7(19): 1700555CrossRefGoogle Scholar
  69. 69.
    Zhang X, Zhang B, Zuo Z, Wang M, Shen Y. N/Si co-doped oriented single crystalline rutile TiO2 nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(18): 10020–10025CrossRefGoogle Scholar
  70. 70.
    Zhang X, Yang H, Zhang B, Shen Y, Wang M. BiOI-TiO2 nanocomposites for photoelectrochemical water splitting. Advanced Materials Interfaces, 2016, 3(1): 1500273CrossRefGoogle Scholar
  71. 71.
    Harrison S, Hayne M. Photoelectrolysis using type-II semiconductor heterojunctions. Scientific Reports, 2017, 7(1): 11638CrossRefGoogle Scholar
  72. 72.
    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244CrossRefGoogle Scholar
  73. 73.
    Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909CrossRefGoogle Scholar
  74. 74.
    Zhang X, Zhang B, Liu S, Kang H, Kong W, Zhang S, Shen Y, Yang B. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation. Applied Surface Science, 2018, 436: 974–980CrossRefGoogle Scholar
  75. 75.
    Zhang X, Zhang B, Luo Y, Lv X, Shen Y. Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation. Applied Surface Science, 2017, 391: 288–294CrossRefGoogle Scholar
  76. 76.
    Zhang X, Zhang B, Huang D, Yuan H, Wang M, Shen Y. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon, 2014, 80: 591–598CrossRefGoogle Scholar
  77. 77.
    Shi W, Zhang X, Brillet J, Huang D, Li M, Wang M, Shen Y. Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105: 387–393CrossRefGoogle Scholar
  78. 78.
    Shi W, Zhang X, Li S, Zhang B, Wang M, Shen Y. Carbon coated Cu2O nanowires for photoelectrochemical water splitting with enhanced activity. Applied Surface Science, 2015, 358: 404–411CrossRefGoogle Scholar
  79. 79.
    Zhang X, Zhang B, Cao K, Brillet J, Chen J, Wang M, Shen Y. A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(43): 21630–21636CrossRefGoogle Scholar
  80. 80.
    Chen Y S, Manser J S, Kamat P V. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. Journal of the American Chemical Society, 2015, 137 (2): 974–981CrossRefGoogle Scholar
  81. 81.
    Brillet J, Yum J, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Grätzel M, Sivula K. Highly efficient water splitting by a dualabsorber tandem cell. Nature Photonics, 2012, 6(12): 824–828CrossRefGoogle Scholar
  82. 82.
    Park H, Kweon K, Ye H, Paek E, Hwang G, Bard A. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and firstprinciples density-functional calculation. Journal of Physical Chemistry C, 2011, 115(36): 17870–17879CrossRefGoogle Scholar
  83. 83.
    Leonard K, Nam K, Lee H, Kang S, Park H, Bard A. ZnWO4/WO3 composite for improving photoelectrochemical water oxidation. Journal of Physical Chemistry C, 2013, 117(31): 15901–15910CrossRefGoogle Scholar
  84. 84.
    Ye H, Park H, Bard A. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemic al microscopy. Journal of Physical Chemistry C, 2011, 115(25): 12464–12470CrossRefGoogle Scholar
  85. 85.
    Ye H, Lee J, Jang J, Bard A. Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. Journal of Physical Chemistry C, 2010, 114(31): 13322–13328CrossRefGoogle Scholar
  86. 86.
    Lu X, Hu Y, He H. Electron transfer kinetics at interfaces using secm (scanning electrochemical microscopy). In: Sur U K, ed. Recent Trend in Electrochemical Science and Technology. Rijeka: In Tech, 2012, 127–156Google Scholar
  87. 87.
    Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy of Ni1–xFexOOH (0<x<0.27) oxygen evolving catalyst: kinetics of the “fast” iron sites. Journal of the American Chemical Society, 2016, 138(1): 313–318CrossRefGoogle Scholar
  88. 88.
    Zhang B, Zhang X, Xiao X, Shen Y. Photoelectrochemical water splitting system–a study of interfacial charge transfer with scanning electrochemical microscopy. ACS Applied Materials & Interfaces, 2016, 8(3): 1606–1614CrossRefGoogle Scholar
  89. 89.
    Rastgar S, Wittstock G. Characterization of photoactivity of nanostructured BiVO4 at polarized liquid-liquid interfaces by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2017, 121(46): 25941–25948CrossRefGoogle Scholar
  90. 90.
    Ahn H S, Bard A J. Surface interrogation of CoPi water oxidation catalyst by scanning electrochemical microscopy. Journal of the American Chemical Society, 2015, 137(2): 612–615CrossRefGoogle Scholar
  91. 91.
    Zigah D, Rodríguez-López J, Bard A J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Physical Chemistry Chemical Physics, 2012, 14(37): 12764–12772CrossRefGoogle Scholar
  92. 92.
    Park H, Leonard K, Bard A. Surface interrogation scanning electrochemical microscopy (SI-SECM) of photoelectrochemistry at a W/Mo-BiVO4 semiconductor electrode: quantification of hydroxyl radicals during water oxidation. Journal of Physical Chemistry C, 2013, 117(23): 12093–12102CrossRefGoogle Scholar
  93. 93.
    Cho S, Park H, Lee H, Nam K, Bard A. Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation. Journal of Physical Chemistry C, 2013, 117(44): 23048–23056CrossRefGoogle Scholar
  94. 94.
    Krumov M R, Simpson B H, Counihan M J, Rodríguez-López J. In situ quantification of surface intermediates and correlation to discharge products on hematite photoanodes using a combined scanning electrochemical microscopy approach. Analytical Chemistry, 2018, 90(5): 3050–3057CrossRefGoogle Scholar
  95. 95.
    Kim J Y, Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy for a photoelectrochemical reaction: water oxidation on a hematite surface. Analytical Chemistry, 2018, 90(5): 3045–3049CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofan Zhang
    • 1
    • 2
    Email author
  • Man Liu
    • 1
  • Weiqian Kong
    • 1
  • Hongbo Fan
    • 2
  1. 1.Henan Provincial Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional MaterialsHuanghe Science and Technology CollegeZhengzhouChina
  2. 2.School of Environment and Civil EngineeringDongguan University of TechnologyDongguanChina

Personalised recommendations