Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 407–412 | Cite as

Proposal for CEP measurement based on terahertz air photonics

  • Kejia Wang
  • Xinyang Gu
  • Jinsong Liu
  • Zhengang Yang
  • Shenglie WangEmail author
Research Article
  • 7 Downloads

Abstract

Single-shot carrier envelope phase (CEP) measurement is a challenge in the research field of ultrafast optics. We theoretically investigate how an intense terahertz pulse modulates second harmonic emission (SH) from a gas plasma induced by a few-cycle laser pulse (FCL). Results show that the modulation quantity of SH intensity has a cosinoidal dependence on the CEP of FCL pulses, based on which we propose a low energy, all-optical method for single-shot CEP measurements via using a known intense terahertz pulse. Moreover, we propose an experimental realization.

Keywords

ultrafast measurements far-infrared or terahertz ultrafast nonlinear optics harmonic generation and mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 61475054 and 11574105), Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029). KJWang thanks Dr. HuWang for his previous calculation about this work.

References

  1. 1.
    Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728CrossRefGoogle Scholar
  2. 2.
    Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212CrossRefGoogle Scholar
  3. 3.
    Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903CrossRefGoogle Scholar
  4. 4.
    Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368CrossRefGoogle Scholar
  5. 5.
    Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584CrossRefGoogle Scholar
  6. 6.
    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131CrossRefGoogle Scholar
  7. 7.
    Kim K Y. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706CrossRefGoogle Scholar
  8. 8.
    Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001CrossRefGoogle Scholar
  9. 9.
    Wang T J, Marceau C, Chen Y, Yuan S, Théberge F, Châteauneuf M, Dubois J, Chin S L. Terahertz emission from a dc-biased twocolor femtosecond laser-induced filament in air. Applied Physics Letters, 2010, 96(21): 211113CrossRefGoogle Scholar
  10. 10.
    Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903CrossRefGoogle Scholar
  11. 11.
    Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190CrossRefGoogle Scholar
  12. 12.
    Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58CrossRefGoogle Scholar
  13. 13.
    Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105CrossRefGoogle Scholar
  14. 14.
    Wang H, Wang K, Liu J, Dai H, Yang Z. Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model. Optics Express, 2012, 20(17): 19264–19270CrossRefGoogle Scholar
  15. 15.
    Liu J, Wang H, Wang K, Yang Z, Wang S. Coherent detection of terahertz pulses via gas plasma induced by few-cycle laser pulses with fixed carrier envelope phase. Optics Letters, 2013, 38(7): 1104–1106CrossRefGoogle Scholar
  16. 16.
    Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103CrossRefGoogle Scholar
  17. 17.
    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004CrossRefGoogle Scholar
  18. 18.
    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U. Single-cycle nonlinear optics. Science, 2008, 320(5883): 1614–1617CrossRefGoogle Scholar
  19. 19.
    Krausz F, Ivanov M. Attosecond physics. Reviews of Modern Physics, 2009, 81(1): 163–234CrossRefGoogle Scholar
  20. 20.
    Takahashi E J, Lan P, Mücke O D, Nabekawa Y, Midorikawa K. Nonlinear attosecond metrology by intense isolated attosecond pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 8800112CrossRefGoogle Scholar
  21. 21.
    Yu T J, Nam C H. Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method. Progress in Quantum Electronics, 2012, 36(4–6): 541–565CrossRefGoogle Scholar
  22. 22.
    Roos P A, Li X, Smith R P, Pipis J A, Fortier T M, Cundiff S T. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 2005, 30(7): 735–737CrossRefGoogle Scholar
  23. 23.
    Osvay K, Görbe M, Grebing C, Steinmeyer G. Bandwidthindependent linear method for detection of the carrier-envelope offset phase. Optics Letters, 2007, 32(21): 3095–3097CrossRefGoogle Scholar
  24. 24.
    Wittmann T, Horvath B, Helml W, Schätzel MG, Gu X, Cavalieri A L, Paulus G G, Kienberger R. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nature Physics, 2009, 5(5): 357–362CrossRefGoogle Scholar
  25. 25.
    Vernaleken A, Schmidt B, Wolferstetter M, Hänsch TW, Holzwarth R, Hommelhoff P. Carrier-envelope frequency stabilization of a Ti: sapphire oscillator using different pump lasers. Optics Express, 2012, 20(16): 18387–18396CrossRefGoogle Scholar
  26. 26.
    Piglosiewicz B, Schmidt S, Park D J, Vogelsang J, Groß P, Manzoni C, Farinello P, Cerullo G, Lienau C. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 2014, 8(1): 37–42CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kejia Wang
    • 1
  • Xinyang Gu
    • 1
  • Jinsong Liu
    • 1
  • Zhengang Yang
    • 1
  • Shenglie Wang
    • 1
    Email author
  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic informationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations