Advertisement

Spectrally efficient single carrier 400G optical signal transmission

  • Jianjun YuEmail author
Research Article
  • 8 Downloads

Abstract

In this paper, the recent progress on spectrally efficient single carrier (SC) 400G optical signal transmission was summarized. By using quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (16QAM) and 64QAM, we can realize transmission distance over 10000, 6000 and 3000 km, respectively, with large area fiber and all-Raman amplification. To improve the system performance and generate high-order QAM, advanced digital signal processing algorithms such as probabilistic shaping and look-up table pre-distortion are employed to improve the transmission performance.

Keywords

coherent detection digital signal processing single carrier (SC) probabilistic shaping OFDM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang F, Jiang W J, Chan T, Way W. Enabling single-carrier spectral effcient 400Gbps transmission. Technical Publication, Inphi Corp in collaboration with NeoPhotonics, 2017, https://www. inphi.com/products/whitepapers/400GbsSingleCarrier.pdfGoogle Scholar
  2. 2.
    Savory S J, Gavioli G, Killey R I, Bayvel P. Transmission of 42.8 Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation. In: Proceedings of Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2007, paper OTuA1Google Scholar
  3. 3.
    Hongo J, Kasai K, Yoshida M, Nakazawa M. 1-Gsymbol/s 64-QAM coherent optical transmission over 150 km. IEEE Photonics Technology Letters, 2007, 19(9): 638–640CrossRefGoogle Scholar
  4. 4.
    Ip E, Kahn J M. Digital equalization of chromatic dispersion and polarization mode dispersion. Journal of Lightwave Technology, 2007, 25(8): 2033–2043CrossRefGoogle Scholar
  5. 5.
    Goldfarb G, Li G. Chromatic dispersion compensation using digital IIR filtering with coherent detection. IEEE Photonics Technology Letters, 2007, 19(13): 969–971CrossRefGoogle Scholar
  6. 6.
    Ip E, Kahn J M. Feedforward carrier recovery for coherent optical communications. Journal of Lightwave Technology, 2007, 25(9): 2675–2692CrossRefGoogle Scholar
  7. 7.
    Fludger C R, Duthel T, van den Borne D, Schulien C, Schmidt E, Wuth T, de Man E, Khoe G D, de Waardt H. 10111 Gbit/s, 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation. In: Proceedings of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2007, paper PDP22Google Scholar
  8. 8.
    Zhou X, Yu J, Huang M, Shao Y, Wang T, Magill P, Cvijetic M, Nelson L, Birk M, Zhang G, Ten S Y, Matthew H B, Mishra S K. 32 Tb/s (320Gb/s) PDM-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. San Diego: Optical Society of America, 2009, paper PDPB4Google Scholar
  9. 9.
    Zhou X, Yu J, Huang M, Shao Y, Wang T, Nelson L, Magill P, Birk M, Borel P I, Peckham D W, Lingle R. 64-Tb/sPDM-36QAM transmission over 320 km using both pre-and posttransmission digital equalization. In: Proceedings of National Fiber Optic Engineers Conference. San Diego: Optical Society of America, 2010, paper PDPB9Google Scholar
  10. 10.
    Chien H C, Yu J, Cai Y, Zhang J, Li X, Xiao X. 400G-over-80 km connections powered by probabilistically shaped PM-256QAM wavelengths at 34 GBaud. In: Proceedings of 43th European Conference on Optical Communication. Gothenburg: IET, 2017, P2. SC6.17Google Scholar
  11. 11.
    Raybon G, Adamiecki A, Winzer P, Xie C, Konczykowska A, Jorge F, Dupuy J, Buhl L L, Sethumadhavan C, Draving S, Grove M, Rush K. Single-carrier 400 G interface and 10-channel WDM transmission over 4800 km using all-ETDM 107-Gbaud PDMQPSK. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2013, PDP5A.5Google Scholar
  12. 12.
    Raybon G, Adamiecki A, Winzer P J, Montoliu M, Randel S, Umbach A, Margraf M, Stephan J, Draving S, Grove M, Rush K. All ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver. In: Proceedings of 39th European Conference and Exhibition on Optical Communication. London: IET, 2013, paper PD 2.D.3CrossRefGoogle Scholar
  13. 13.
    Zhang J, Yu J, Dong Z, Jia Z, Chien H C, Cai Y, Ge C, Shi S, Chen Y, Wang H, Xia Y. Transmission of 20super-Nyquistfiltered signals over 3600 km based on single-carrier 110-Gbaud PDM QPSK with 100-GHz Grid. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5B.3Google Scholar
  14. 14.
    Zhang J, Yu J, Zhu B, Li F, Chien H C, Jia Z, Cai Y, Li X, Xiao X, Fang Y, Wang Y. Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10130- and 6078 km terrestrial fiber links. Optics Express, 2015, 23(13): 16540–16545CrossRefGoogle Scholar
  15. 15.
    Zhang J, Yu J, Zhu B, Chien H C. WDM transmission of singlecarrier 120-GBd ETDM PDM-16QAM signals over 1200-km terrestrial fiber links. Journal of Lightwave Technology, 2017, 35 (4): 1033–1040Google Scholar
  16. 16.
    Zhang J, Yu J, Chien H C. 1.6 Tb/sunrepeateredtransmission over 205-km SSMF using 65-Gbaud PDM-16QAM with joint LUT pre-distortion and post DBP nonlinearity compensation. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th2A.51Google Scholar
  17. 17.
    Zhang J, Yu J, Chien H C. Single-carrier 400G based on 84-Gbaud PDM-8QAM transmission over 2125 km SSMF enhanced by preequalization, LUT and DBP. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Tu2E.2Google Scholar
  18. 18.
    Schuh K, Buchali F, Idler W, Eriksson T A, Schmalen L, Templ W, Altenhain L, Dümler U, Schmid R, Möller M, Engenhardt K. Single carrier 1.2 Tbit/s transmission over 300 km with PM-64QAM at 100 GBaud. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th5B.5Google Scholar
  19. 19.
    Sano A, Nagatani M, Nosaka H, Miyamoto Y. PDM-16QAM transmission over 1920 km using high-speed InP MUXDAC integrated module. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2015, paper M3G.3Google Scholar
  20. 20.
    Raybon G, Adamiecki A, Cho J, Winzer P, Konczykowska A, Jorge F, Dupuy J Y, Riet M, Duval B, Kim K, Randel S, Pilori D, Guan B, Fontaine N, Burrows E C. Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC. In: Proceedings of IEEE Photonics Conference (IPC). Reston: IEEE, 2015, 1–2Google Scholar
  21. 21.
    Randel S, Pilori D, Corteselli S, Raybon G, Adamiecki A, Gnauck A, Chandrasekhar S, Winzer P J, Altenhain L, Bielik A, Schmid R. All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5C.8CrossRefGoogle Scholar
  22. 22.
    Rios-Müller R, Renaudier J, Brindel P, Mardoyan H, Jennevé P, Schmalen L, Charlet G. 1-Terabit/s net data-rate transceiver based on single-carrier nyquist-shaped 124 Gbaud PDM-32QAM. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2015, paper Th5B.1CrossRefGoogle Scholar
  23. 23.
    Chen X, Chandrasekhar S, Randel S, Raybon G, Adamiecki A, Pupalaikis P, Winzer P. All-electronic 100-GHz bandwidth digitalto- analog converter generating PAM signals up to 190-Gbaud. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Th5C.5Google Scholar
  24. 24.
    Chien H C, Jia Z, Yu J. 256-Gb/s single-carrier PM-256QAM implementation using coordinated DD-LMS and CMA equalization. In: Proceedings of European Conference on Optical Communication (ECOC). Valencia: IEEE, 2015, Mo.3.3.2CrossRefGoogle Scholar
  25. 25.
    Dong Z, Li X, Yu J, Chi N. Nyquist-WDM PDM- 64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization. Journal of Lightwave Technology, 2012, 30(23): 3687–3692CrossRefGoogle Scholar
  26. 26.
    Zhou X, Yu J, Huang M F, Shao Y, Wang T, Nelson L, Magill P, Birk M, Borel P I, Peckham D W, Lingle R, Zhu B. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing. Journal of Lightwave Technology, 2011, 29(4): 571–577CrossRefGoogle Scholar
  27. 27.
    Jia Z, Chien H, Cai Y, Yu J, Zhu B, Ge C, Wang T, Shi S, Wang H, Xia Y, Chen Y. Experimental demonstration of PDM-32QAM single-carrier 400G over 1200-km transmission enabled by trainingassisted pre-equalization and look-up table. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Tu3A.4Google Scholar
  28. 28.
    Yu J, Zhou X. Ultra-high-capacity DWDM transmission system for 100G and beyond. IEEE Communications Magazine, 2010, 48(3): S56–S64Google Scholar
  29. 29.
    Yankov M P, Zibar D, Larsen K J, Christensen L P B, Forchhammer S. Constellation shaping for fiber-optic channels with QAM and high spectral efficiency. IEEE Photonics Technology Letters, 2014, 26(23): 2407–2410CrossRefGoogle Scholar
  30. 30.
    Yu J, Wang K, Zhang J, Zhu B, Dzioba S, Li X, Chien H, Xiao X, Cai Y, Shi J, Chen Y, Shi S, Xia Y. 8WDM signal coherent transmission over 6000-km enabled by PS and HBCDM. In: Proceedings of Optical Fiber Communication Conference. San Diego: Optical Society of America, 2018, paper M2C.3Google Scholar
  31. 31.
    Shi J, Zhang J, Chi N, Cai Y, Li X, Zhang Y, Zhang Q, Yu J. Probabilistically shaped 1024-QAM OFDM transmission in an IMDD system. In: Proceedings of Optical Fiber Communication Conference. San Diego: Optical Society of America, 2018, paper W2A.44Google Scholar
  32. 32.
    Ghazisaeidi A, Schmalen L, de Jauregui I F, Tran P, Simonneau C, Brindel P, Charlet G. 52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC. In: Proceedings of European Conference on Optical Communication (ECOC). Cannes: IEEE, 2014, PD.3.4Google Scholar
  33. 33.
    Zhu Y, Li A, Peng W, Kan C, Li Z, Chowdhury S, Cui Y, Bai Y. Spectrally-efficient single-carrier 400G transmission enabled by probabilistic shaping. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, M3C.1CrossRefGoogle Scholar
  34. 34.
    Ghazisaeidi A, de Jauregui I F, Rios-Muller R, Schmalen L, Tran P, Brindel P, Meseguer A C, Hu Q, Buchali F, Charlet G, Renaudier J. 65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM. In: Proceedings of European Conference on Optical Communication (ECOC). Dusseldorf: VDE, 2016, Th.3.C.4Google Scholar
  35. 35.
    Buchali F, Böcherer G, Idler W, Schmalen L, Schulte P, Steiner F. Experimental demonstration of capacity increase and rate adaptation by probabilistically shaped 64QAM. In: Proceedings of European Conference on Optical Communication (ECOC). Valencia: IEEE, 2015, PDP3.4Google Scholar
  36. 36.
    Cho J, Chen X, Chandrasekhar S, Raybon G, Dar R, Schmalen L, Burrows E, Adamiecki A, Corteselli S, Pan Y, Correa D, McKay B, Zsigmond S, Winzer P, Grubb S. Trans-atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250- Gb/s 16-QAM. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, Th5B.3CrossRefGoogle Scholar
  37. 37.
    Buchali F, Schmalen L, Schuh K, Idler W. Optimization of timedivision hybrid modulation and its application to rate adaptive 200 Gb transmission. In: Proceedings of European Conference on Optical Communication (ECOC). Cannes: IEEE, 2014, Tu.4.3.1Google Scholar
  38. 38.
    Böcherer G, Steiner F, Schulte P. Bandwidth efficient and ratematched low-density parity-check coded modulation. IEEE Transactions on Communications, 2015, 63(12): 4651–4665CrossRefGoogle Scholar
  39. 39.
    Schulte P, Böcherer G. Constant composition distribution matching. IEEE Transactions on Information Theory, 2016, 62(1): 430–434MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang J, Yu J, Chien H C. High symbol rate signal generation and detection with linear and nonlinear signal processing. Journal of Lightwave Technology, 2018, 36(2): 408–415CrossRefGoogle Scholar
  41. 41.
    Zhang J, Yu J, Chi N, Chien H C. Time-domain digital preequalization for band-limited signals based on receiver-side adaptive equalizers. Optics Express, 2014, 22(17): 20515–20529CrossRefGoogle Scholar
  42. 42.
    Rafique D, Napoli A, Calabro S, Spinnler B. Digital preemphasis in optical communication systems: on the DAC requirements for terabit transmission applications. Journal of Lightwave Technology, 2014, 32(19): 3247–3256CrossRefGoogle Scholar
  43. 43.
    Napoli A, Mezghanni M M, Calabrò S, Palmer R, Saathoff G, Spinnler B. Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators. Journal of Lightwave Technology, 2017, 35(19): 4289–4296CrossRefGoogle Scholar
  44. 44.
    Berenguer P W, Nölle M, Molle L, Raman T, Napoli A, Schubert C, Fischer J K. Nonlinear digital pre-distortion of transmitter components. Journal of Lightwave Technology, 2016, 34(8): 1739–1745CrossRefGoogle Scholar
  45. 45.
    Ke J H, Gao Y, Cartledge J C. 400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping. Optics Express, 2014, 22(1): 71–83CrossRefGoogle Scholar
  46. 46.
    Zhang J, Yu J, Chien H C. Advanced algorithm for high-baud rate signal generation and detection. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper M3D.1CrossRefGoogle Scholar
  47. 47.
    Cai J X, Cai Y, Davidson C R, Foursa D G, Lucero A J, Sinkin O V, Patterson W W, Pilipetskii A N, Mohs G, Bergano N S. Transmission ofbandwidth-constrained PDM-RZQPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km. Journal of Lightwave Technology, 2011, 29(4): 491–498CrossRefGoogle Scholar
  48. 48.
    Li J, Tipsuwannakul E, Eriksson T, Karlsson M, Andrekson P A. Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping. Journal of Lightwave Technology, 2012, 30(11): 1664–1676CrossRefGoogle Scholar
  49. 49.
    Li J, Karlsson M, Andrekson P A, Xu K. Transmission of 1.936 Tb/s DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel. Optics Express, 2012, 20(26): B223–B231Google Scholar
  50. 50.
    Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multimodulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078CrossRefGoogle Scholar
  51. 51.
    Gao Y, Lau A P T, Yan S, Lu C. Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems. Optics Express, 2011, 19(22): 21717–21729CrossRefGoogle Scholar
  52. 52.
    Terayama M, Okamoto S, Kasai K, Yoshida M, Nakazawa M. 4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link. In: Proceedings of Optical Fiber Communication Conference. San Diego: Optical Society of America, 2018, paper Th1F.2Google Scholar
  53. 53.
    Zhang J, Yu J, Chi N, Dong Z, Li X. Nonlinear compensation and crosstalk suppression for WDM PDM-QPSK signal with heterodyne detection. Optics Express, 2013, 21(8): 9230–9237CrossRefGoogle Scholar
  54. 54.
    Ip E, Huang Y, Mateo E, Aono Y, Yano Y, Tajima T, Wang T. Interchannel nonlinearity compensation for DP-8QAM using three synchronized sampling scopes. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012, paper OM3A.6CrossRefGoogle Scholar
  55. 55.
    Mateo E F, Zhou X, Li G. Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization- multiplexed WDM systems. Optics Express, 2011, 19(2): 570–583CrossRefGoogle Scholar
  56. 56.
    Zhang S, Huang M, Yaman F, Mateo E, Qian D, Zhang Y, Xu L, Shao Y, Djordjevic I, Wang T, Inada Y, Inoue T, Ogata T, Aoki Y. DM-16QAM OFDM transmission over 10181 km with soft-decision LDPC coding and nonlinearity compensation. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012, paper PDP5C.4Google Scholar
  57. 57.
    Li X, Chen X, Goldfarb G, Mateo E, Kim I, Yaman F, Li G. Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Optics Express, 2008, 16(2): 880–888CrossRefGoogle Scholar
  58. 58.
    Li L, Tao Z, Dou L, Yan W, Oda S, Tanimura T, Hoshida T, Rasmussen J C. Implementation efficient nonlinear equalizer based on correlated digital backpropagation. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWW3CrossRefGoogle Scholar
  59. 59.
    Fehenberger T, Lavery D, Maher R, Alvarado A, Bayvel P, Hanik N. Sensitivity gains by mismatched probabilistic shaping for optical communication systems. IEEE Photonics Technology Letters, 2016, 28(7): 786–789CrossRefGoogle Scholar
  60. 60.
    Fehenberger T, Alvarado A, Bocherer G, Hanik N. On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel. Journal of Lightwave Technology, 2016, 34(21): 5063–5073CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute for Advanced Communication and Data Science, Key Laboratory for Information Science of Electromagnetic Waves (MoE)Fudan UniversityShanghaiChina
  2. 2.Department of Communication Science and EngineeringFudan UniversityShanghaiChina
  3. 3.ZTE TX Inc.MorristownUSA

Personalised recommendations