Advertisement

Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates

  • Ruiqing Hu
  • Yifeng Shi
  • Haifeng Bao
Research Article
  • 7 Downloads

Abstract

A disorderly nanostructured CdSe nanoagglomerates (NAs) with tunable emission are synthesized in aqueous solution. Although the CdSe NAs have diameters of about 20 nm that are larger than the Bohr radius of the crystal bulk, they show size-dependent emission similar to the CdSe nanocrystals. The CdSe NAs represent a collective energy state based on Anderson localization.

Keywords

nano-agglomerates CdSe photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the National Natural Science Foundation of China for financial support of this research (Grant No. 21673167).

References

  1. 1.
    Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 1996, 100(31): 13226–13239CrossRefGoogle Scholar
  2. 2.
    Nirmal M, Brus L E. Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research, 1999, 32(5): 407–414CrossRefGoogle Scholar
  3. 3.
    Maillard M, Motte L, Ngo A T, Pileni M P. Rings and hexagons made of nanocrystals: a marangoni effect. Journal of Physical Chemistry B, 2000, 104(50): 11871–11877CrossRefGoogle Scholar
  4. 4.
    Yang Y, Chen O, Angerhofer A, Cao Y C. Radial-positioncontrolled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 2006, 128(38): 12428–12429CrossRefGoogle Scholar
  5. 5.
    Kovalev D, Heckler H, Polisski G, Koch F. Optical properties of Si nanocrystals. Physica Status Solidi, 1999, 215(2): 871–932CrossRefGoogle Scholar
  6. 6.
    Qu L, Yu W W, Peng X. In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Letters, 2004, 4(3): 465–469CrossRefGoogle Scholar
  7. 7.
    Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018CrossRefGoogle Scholar
  8. 8.
    Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715CrossRefGoogle Scholar
  9. 9.
    Murray C B, Kagan C, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Research, 2000, 30(1): 545–610Google Scholar
  10. 10.
    Sadasivuni K K, Kafy A, Zhai L, Ko H U, Mun S, Kim J. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small, 2015, 11(8): 994–1002CrossRefGoogle Scholar
  11. 11.
    Christopher Doty R, Yu H, Shih C, Korgel B. Temperaturedependent electron transport through silver nanocrystal superlattices. Journal of Physical Chemistry B, 2015, 105(35): 8291–8296CrossRefGoogle Scholar
  12. 12.
    Stephen C, Stephen F, Brian K, Donald F. Time-resolved smallangle X-ray scattering studies of nanocrystal superlattice selfassembly. Journal of the American Chemical Society, 2015, 120(12): 2969–2970Google Scholar
  13. 13.
    Jia T, Kolpin A, Ma C, Chan R C, Kwok W M, Tsang S C. A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chemical Communications, 2014, 50(10): 1185–1188CrossRefGoogle Scholar
  14. 14.
    Artemyev M V, Bibik A I, Gurinovich L I, Gaponenko S V, Jaschinski H, Woggon U. Optical properties of dense and diluted ensembles of semiconductor quantum dots. Physica Status Solidi, 2001, 224(2): 393–396CrossRefGoogle Scholar
  15. 15.
    Artemyev M V, Woggon U, Jaschinski H, Gurinovich L I, Gaponenko S V. Spectroscopic study of electronic states in an ensemble of closeccacked CdSe nanocrystals. Journal of Physical Chemistry B, 2000, 104(49): 11617–11621CrossRefGoogle Scholar
  16. 16.
    Ge J P, Li Y D, Yang G Q. Mechanism of aqueous ultrasonic reaction: controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe. Chemical Communications, 2002, 17(17): 1826–1827CrossRefGoogle Scholar
  17. 17.
    Ma X D, Qian X F, Yin J, Xi H A, Zhu Z K. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. Journal of Colloid and Interface Science, 2002, 252(1): 77–81CrossRefGoogle Scholar
  18. 18.
    Zhu J, Xu S, Wang H, Zhu J, Chen H. Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Advanced Materials, 2003, 15(2): 156–159CrossRefGoogle Scholar
  19. 19.
    Mott N F, Davis E A. Electronic Processes. In: Non-Crystalline Materials. 2nd Edition, Oxford: Clarendon Press, 1979Google Scholar
  20. 20.
    Anderson P W. Absence of diffusion in certain random lattices. Physical Review, 1958, 109(5): 1492–1505CrossRefGoogle Scholar
  21. 21.
    Zhong L W, Steven A H, Igor V, Robert L W, James B, Neal D E, Kathy B A. Superlattices of self-assembled tetrahedral Ag nanocrystals. Advanced Materials, 2010, 10(10): 808–812Google Scholar
  22. 22.
    Ma Q, Xiong R, Huang Y M. Tunable photoluminescence of porous silicon by liquid crystal infiltration. Journal of Luminescence, 2011, 131(10): 2053–2057CrossRefGoogle Scholar
  23. 23.
    Swart I, Liljeroth P, Vanmaekelbergh D. Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews, 2016, 116(18): 11181–11219CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringWuhan Textile UniversityWuhanChina

Personalised recommendations