Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 2, pp 107–115 | Cite as

Broadband linearization for 5G fronthaul transmission

  • Xiupu Zhang
Review Article Invited Paper, Special Issue—Photonics Research in Canada
  • 64 Downloads

Abstract

5G is emerging, but the current fronthaul transmission technologies used for 3G and 4G may not be efficient and appropriate for 5G. It has been found that frequency division multiple access (FDMA) and time-division multiple access (TDMA) based radio over fiber (RoF) may be considered the most appropriate for 5G fronthaul transmission technology. Due to analog RoF transmission, broadband linearization is required. In this work, both electrical and optical broadband linearization techniques are reviewed.

Keywords

5G fronthaul radio over fiber (RoF) optical fiber communications linearization* 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Third generation partnership project (3GPP) releases 10–15, 2011–2017Google Scholar
  2. 2.
    Asai T. 5G radio access network and its requirements on mobile optical networks. In: Proceedings of International Conference on Optical Network Design and Modeling (ONDM). Pisa, Italy, 2015, 7–11Google Scholar
  3. 3.
    Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52(2): 74–80CrossRefGoogle Scholar
  4. 4.
    Liu X, Zeng H, Chand N, Effenberger F. Efficient mobile fronthaul via DSP-based channel aggregation. Journal of Lightwave Technology, 2016, 34(6): 1556–1564CrossRefGoogle Scholar
  5. 5.
    Liu X, Effenberger F. Emerging optical access network technologies for 5G wireless. Journal of Optical Communications and Networking, 2016, 8(12): B70–B79CrossRefGoogle Scholar
  6. 6.
    Zeng H, Liu X, Megeed S, Chand N, Effenberger F. Real-time demonstration of CPRI compatible efficient mobile fronthaul using FPGA. Journal of Lightwave Technology, 2017, 35(6): 1241–1247CrossRefGoogle Scholar
  7. 7.
    Kani J, Terada J, Suzuki K, Otaka A. Solutions for future mobile fronthaul and access network convergence. Journal of Lightwave Technology, 2017, 35(3): 527–534Google Scholar
  8. 8.
    Liu X, Zeng H, Chand N, Effenberger F. CPRI compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI equivalent data rate in a single 10-GHz bandwidth IMDD channel. In: Proceedings of Optical Fiber Communications (OFC) Conference. Anaheim, CA, 2016, Paper W1H.3Google Scholar
  9. 9.
    Zhang X, Zhu R, Shen D, Liu T. Linearization technologies for broadband radio-over-fiber transmission systems. MDPI Photonics, 2014, 1(1): 455–472CrossRefGoogle Scholar
  10. 10.
    Shen Y, Hraimel B, Zhang X, Cowan G, Wu K, Liu T. A novel analog broadband RF predistortion circuit to linearize electroabsorption modulator in multiband OFDM ultra-wideband radio over fiber systems. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3327–3335CrossRefGoogle Scholar
  11. 11.
    Zhu R, Zhang X, Shen D, Liu T. Broadband analog predistortion circuit using zero bias detector diodes for radio over fiber systems. IEEE Photonics Technology Letters, 2013, 25(21): 2101–2104CrossRefGoogle Scholar
  12. 12.
    Zhu R, Zhang X, Shen D, Zhang Y. Ultra broadband predistortion circuit for radio-over-fiber transmission systems. Journal of Lightwave Technology, 2016, 34(22): 5137–5145CrossRefGoogle Scholar
  13. 13.
    Zhang X, Saha S, Zhu R, Liu T, Shen D. Analog pre-distortion circuit for radio over fiber transmission. IEEE Photonics Technology Letters, 2016, 28(22): 2541–2544CrossRefGoogle Scholar
  14. 14.
    Wood J. Behavioral Modeling and Linearization of RF Power Amplifiers. Boston: Artech House, 2014Google Scholar
  15. 15.
    Tang W. Envelope-assisted RF digital predistortion for broadband radio-over-fiber transmission with RF amplifier. Dissertation for the Master Degree. Montreal: Concordia University, 2017Google Scholar
  16. 16.
    Bassam S, Helaoui M, Ghannouchi F. 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2547–2553CrossRefGoogle Scholar
  17. 17.
    Xie X. Combined linearization of both analog and digital predistortion for broadband radio over fiber transmission. Dissertation for the Master Degree. Montreal: Concordia University, 2017Google Scholar
  18. 18.
    Masella B, Hraimel B, Zhang X. Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator. Journal of Lightwave Technology, 2009, 27(15): 3034–3041CrossRefGoogle Scholar
  19. 19.
    Hraimel B, Zhang X. Characterization and compensation of AMAM and AM-PM distortion in mixed polarization radio over fiber systems. In: Proceedings of IEEE/MTT-S International Microwave Symposium Digest. Montreal, QC, 2012, 1–3Google Scholar
  20. 20.
    Hraimel B, Zhang X, Liu T, Xu T, Nie Q, Shen D. Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive X-cut Mach-Zehnder modulator. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10): 3328–3338CrossRefGoogle Scholar
  21. 21.
    Hraimel B, Zhang X, Jiang W, Wu K, Liu T, Xu T, Nie Q, Xu K. Experimental demonstration of mixed-polarization to linearize electro-absorption modulators in radio-over-fiber links. IEEE Photonics Technology Letters, 2011, 23(4): 230–232CrossRefGoogle Scholar
  22. 22.
    Hraimel B, Zhang X. Performance improvement of radio-over fiber links using mixed-polarization electro-absorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3239–3248CrossRefGoogle Scholar
  23. 23.
    Hraimel B, Zhang X. Suppression of radio over fiber system nonlinearity using a semiconductor optical amplifier and mixed polarization. In: Proceedings of Optical Fiber Communication (OFC) Conference. Anaheim, CA, 2013, Paper JTh2A.59Google Scholar
  24. 24.
    Chen X, Li W, Yao J. Microwave photonic link with improved dynamic range using a polarization modulator. IEEE Photonics Technology Letters, 2013, 25(14): 1373–1376CrossRefGoogle Scholar
  25. 25.
    Li W, Yao J. Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop. Optics Express, 2013, 21(13): 15692–15697CrossRefGoogle Scholar
  26. 26.
    Zhu R, Shen D, Zhang X, Liu T. Analysis of dual wavelength linearization technique for radio-over-fiber systems with electroabsorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 2692–2702CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.iPhotonics Labs, Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations