Multi-channel phase regeneration of QPSK signals based on phase sensitive amplification

Research Article
  • 8 Downloads

Abstract

In this paper, we propose and demonstrate simultaneous phase regeneration of four different channels of QPSK signal based on phase sensitive amplification. The configuration can be divided into two parts. The first one uses four wave mixing in high nonlinear fiber (HNLF) to generate the corresponding three harmonic conjugates precisely at the frequency of the original signals. The other one uses optical combiner to realize coherent addition which is aimed at completely removing the interaction in phase regeneration stage. The simulation results suggest that this scheme can optimize signal constellation to a large extend especially in high noise environment. Besides, optical signal to noise ratio (OSNR) can improve more than 3 dB while the bit-error-rate (BER) reaches 10–3 with a constant white noise and 15° phase noise.

Keywords

four wave mixing multi-channel coherent addition phase sensitive regeneration optical combiner 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) (Grant No. 61372118).

References

  1. 1.
    Ji Y, Wang X, Zhang S, Gu R, Guo T, Ge Z. Dual-layer efficiency enhancement for future passive optical network. Science China Information Sciences, 2016, 59(2): 1–13CrossRefGoogle Scholar
  2. 2.
    Ji Y, Zhang J, Zhao Y, Yu X, Zhang J, Chen X. Prospects and research issues in multi-dimensional all optical networks. Science China Information Sciences, 2016, 59: 101301CrossRefGoogle Scholar
  3. 3.
    Wang H, Zhao J, Li H, Ji Y. Opaque virtual network mapping algorithms based on available spectrum adjacency for elastic optical networks. Science China Information Sciences, 2016, 59(4): 1–11Google Scholar
  4. 4.
    Stiller B, Onishchukov G, Schmauss B, Leuchs G. Phase regeneration of a star-8QAM signal in a phase-sensitive amplifier with conjugated pumps. Optics Express, 2014, 22(1): 1028–1035CrossRefGoogle Scholar
  5. 5.
    Yang J Y, Akasaka Y, Sekiya M. Optical phase regeneration of multi-level PSK using dual-conjugate-pump degenerate phasesensitive amplification. In: Proceedings of 38th European Conference and Exhibition on Optical Communications (ECOC). Amsterdam, 2012, 1–3Google Scholar
  6. 6.
    Slavík R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Grüner-Nielsen L, Jakobsen D, Herstrøm S, Phelan R, O’Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P, Richardson D J. Alloptical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photonics, 2010, 4(10): 690–695CrossRefGoogle Scholar
  7. 7.
    Tong Z, Radic S. Low-noise optical amplification and signal processing in parametric devices. Advances in Optics and Photonics, 2013, 5(3): 318–384CrossRefGoogle Scholar
  8. 8.
    Kakande J, Bogris A, Slavík R, Parmigiani F, Syvridis D, Petropoulos P, Richardson D J. First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier. In: Proceedings of 36th European Conference and Exhibition on Optical Communications (ECOC). Turin, 2010, 1–3Google Scholar
  9. 9.
    Li F, Wang H, Ji Y. All optical QPSK regeneration based on a modified Mach-Zehnder interferometer phase sensitive amplifier. In: Proceedings of Asia Communications and Photonics Conference. Wuhan, 2016, AF2A–12Google Scholar
  10. 10.
    Kjøller N K, Meldgaard Roge K, Guan P, Hansen Mulvad H C, Galili M, Oxenlowe L K. A novel phase-locking-free phase sensitive amplifier-based regenerator. Journal of Lightwave Technology, 2016, 34(2): 643–652CrossRefGoogle Scholar
  11. 11.
    Kakande J, Slavík R, Parmigiani F, Bogris A, Syvridis D, Grüner-Nielsen L, Phelan R, Petropoulos P, Richardson D J. Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nature Photonics, 2011, 5(12): 748–752CrossRefGoogle Scholar
  12. 12.
    Kurosu T, Tan H N, Solis-Trapala K, Namiki S. Signal phase regeneration through multiple wave coherent addition enabled by hybrid optical phase squeezer. Optics Express, 2015, 23(21): 27920–27930CrossRefGoogle Scholar
  13. 13.
    Wang H, He C, Li G, Ji Y. All-optical phase quantization with high accuracy based on a multi-wave interference phase sensitive amplifier. IEEE Photonics Journal, 2017, 9(3): 1–8Google Scholar
  14. 14.
    Ros F D, Dalgaard K, Lei L, Xu J, Peucheret C. QPSK-to-2×BPSK wavelength and modulation format conversion through phasesensitive four-wave mixing in a highly nonlinear optical fiber. Optics Express, 2013, 21(23): 28743–28750CrossRefGoogle Scholar
  15. 15.
    Cui J, Wang H, Ji Y. Optical modulation format conversion from one QPSK to one BPSK with information-integrity-employing phase-sensitive amplifier. Applied Optics, 2017, 56(18): 5307–5312CrossRefGoogle Scholar
  16. 16.
    Bogris A, Syvridis D. All-optical signal processing for 16-QAM using four-level optical phase quantizers based on phase sensitive amplifiers. In: Proceedings of 39th European Conference and Exhibition on Optical Communications (ECOC). London, 2013, 1–3Google Scholar
  17. 17.
    Sygletos S, Frascella P, Ibrahim S K, Grüner-Nielsen L, Phelan R, O’Gorman J, Ellis A D. A practical phase sensitive amplification scheme for two channel phase regeneration. Optics Express, 2011, 19(26): B938–B945CrossRefGoogle Scholar
  18. 18.
    Sygletos S, McCarthy M E, Fabbri S J, Sorokina M, Stephens M F C, Phillips I D, Giacoumidis E, Suibhne N M, Harper P, Doran N J, Turitsyn S K, Ellis A D. Multichannel regeneration of dual quadrature signals. In: Proceedings of 40th European Conference and Exhibition on Optical Communications (ECOC). Cannes, 2014, 1–3Google Scholar
  19. 19.
    Guan P, Røge K M, Kjøller N K, Mulvad H C H, Hu H, Galili M, Morioka T, Oxenløwe L K. All-opticalWDMregeneration of DPSK signals using optical Fourier transformation and phase sensitive amplification. In: Proceedings of 41th European Conference and Exhibition on Optical Communications (ECOC). Valencia, 2015, 1–3Google Scholar
  20. 20.
    Parmigiani F, Bottrill K R H, Slavík R, Richardson D J, Petropoulos P. Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification. IEEE Photonics Technology Letters, 2016, 28(8): 845–848CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Information Photonics and Optical Communications, School of Information and Communication EngineeringBeijing University of Post and TelecommunicationsBeijingChina

Personalised recommendations