Frontiers of Optoelectronics

, Volume 11, Issue 1, pp 37–52 | Cite as

Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications

Review Article
  • 37 Downloads

Abstract

Targeting the huge unused bandwidth (BW) of modern telecommunication networks, Bi/Er co-doped silica optical fibers (BEDFs) have been proposed and developed for ultra-broadband, high-gain optical amplifiers covering the 1150–1700 nm wavelength range. Ultrabroadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers (BEYDFs) fabricated with the modified chemical vapor deposition (MCVD) and in situ doping techniques. Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers. For controlling the performance of the active fibers, post-treatment processes using high temperature, g-radiation, and laser light have been introduced. Although many fundamental scientific and technological issues and challenges still remain, several photonic applications, such as fiber sensing, fiber gratings, fiber amplification, fiber lasers, etc., have already been demonstrated.

Keywords

Bi/Er co-doped optical fiber (BEDF) broadband emission bismuth-related active center (BAC) modified chemical vapor deposition (MCVD) fiber amplifier fiber sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors are thankful for the support of National Natural Science Foundation of China (Grant Nos. 61520106014, 61405014 and 61377096), Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (No. IPOC2016ZT07), Key Laboratory of Optical Fiber Sensing & Communications (Education Ministry of China), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province (No. GD201702) and Science and Technology Commission of Shanghai Municipality, China (Nos. SKLSFO2015-01 and 15220721500). We also wishes to express our thanks to all members of Photonics & Optical Communications at UNSW, Prof. John Canning and Dr. Kevin Cook at University of Sydney, Prof. Graham Town at Macquarie University, and Prof. Tingyun Wang at Shanghai University for their assistance and contributions.

References

  1. 1.
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362CrossRefGoogle Scholar
  2. 2.
    Dianov E M. Amplification in extended transmission bands using bismuth-doped optical fibers. Journal of Lightwave Technology, 2013, 31(4): 681–688CrossRefGoogle Scholar
  3. 3.
    Won R. View from... communication networks beyond the capacity crunch: is it crunch time? Nature Photonics, 2015, 9(7): 424–426CrossRefGoogle Scholar
  4. 4.
    https://en.wikipedia.org/wiki/Optical_amplifierGoogle Scholar
  5. 5.
    Fujimoto Y, Nakatsuka M. Infrared luminescence from bismuthdoped silica glass. Japanese Journal of Applied Physics, 2001, 40 (Part 2, No. 3B): L279–L281CrossRefGoogle Scholar
  6. 6.
    Ohkura T, Fujimoto Y, Nakatsuka M, Young-Seok S. Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-ray absorption fine structure. Journal of the American Ceramic Society, 2007, 90(11): 3596–3600CrossRefGoogle Scholar
  7. 7.
    Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass. Journal of the American Ceramic Society, 2010, 93(2): 581–589CrossRefGoogle Scholar
  8. 8.
    Sokolov V O, Plotnichenko V G, Koltashev V V, Dianov E M. Centres of broadband near-IR luminescence in bismuth-doped glasses. Journal of Physics D, Applied Physics, 2009, 42(9): 095410CrossRefGoogle Scholar
  9. 9.
    Meng X G, Qiu J R, Peng M Y, Chen D P, Zhao Q Z, Jiang X W, Zhu C S. Near infrared broadband emission of bismuth-doped aluminophosphate glass. Optics Express, 2005, 13(5): 1628–1634CrossRefGoogle Scholar
  10. 10.
    Sun H T, Zhou J, Qiu J. Recent advances in bismuth activated photonic materials. Progress in Materials Science, 2014, 64: 1–72CrossRefGoogle Scholar
  11. 11.
    Murata K, Fujimoto Y, Kanabe T, Fujita H, Nakatsuka M. Bi-doped SiO2 as a new laser material for an intense laser. Fusion Engineering and Design, 1999, 44(1–4): 437–439CrossRefGoogle Scholar
  12. 12.
    Dianov E M. Bismuth-doped optical fibres: a new breakthrough in near-IR lasing media. Quantum Electronics, 2012, 42(9): 754–761CrossRefGoogle Scholar
  13. 13.
    Riumkin K E, Melkumov M A, Bufetov I A, Shubin A V, Firstov S V, Khopin V F, Guryanov A N, Dianov E M. Superfluorescent 1.44 mm bismuth-doped fiber source. Optics Letters, 2012, 37(23): 4817–4819CrossRefGoogle Scholar
  14. 14.
    Dvoyrin V V, Mashinsky V M, Dianov E M, Umnikov A A, Yashkov M V, Guranov A N. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres. In: Proceedings of ECOC, 2005, 4: 949–950Google Scholar
  15. 15.
    Dianov E M. Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results. Laser Physics Letters, 2015, 12(9): 095106CrossRefGoogle Scholar
  16. 16.
    Dianov E M. Fiber for fiber lasers: bismuth-doped optical fibers: advances in an active laser media. Laser Focus World, 2015, 51(9): 16Google Scholar
  17. 17.
    Kuwada Y, Fujimoto Y, Nakatsuka M. Ultrawideband light emission from bismuth and erbium doped silica. Japanese Journal of Applied Physics, 2007, 46(4A): 1531–1532CrossRefGoogle Scholar
  18. 18.
    Peng M, Zhang N, Wondraczek L, Qiu J, Yang Z, Zhang Q. Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses. Optics Express, 2011, 19(21): 20799–20807CrossRefGoogle Scholar
  19. 19.
    Minh Hau T, Yu X, Zhou D, Song Z, Yang Z, Wang R, Qiu J. Super broadband near-infrared emission and energy transfer in Bi–Er codoped lanthanum aluminosilicate glasses. Optical Materials, 2013, 35(3): 487–490CrossRefGoogle Scholar
  20. 20.
    Minh Hau T, Wang R, Yu X, Zhou D, Song Z, Yang Z, He X, Qiu J. Near-infrared broadband luminescence and energy transfer in Bi–Tm–Er co-doped lanthanum aluminosilicate glasses. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1182–1186CrossRefGoogle Scholar
  21. 21.
    Luo Y, Wen J, Zhang J, Canning J, Peng G D. Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands. Optics Letters, 2012, 37(16): 3447–3449CrossRefGoogle Scholar
  22. 22.
    Sathi Z M, Zhang J, Luo Y, Canning J, Peng G D. Improving broadband emission within Bi/Er doped silicate fibres with Yb codoping. Optical Materials Express, 2015, 5(10): 2096–2105CrossRefGoogle Scholar
  23. 23.
    Wen J, Wang T, Pang F, Zeng X, Chen Z, Peng G D. Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis. Japanese Journal of Applied Physics, 2013, 52(12R): 122501CrossRefGoogle Scholar
  24. 24.
    Corbett J D. Homopolyatomic ions of the post-transition elements— synthesis, structure and bonding. In: Lippard S J, ed. Progress in Inorganic Chemistry. Hoboken, NJ: JohnWiley & Sons, Inc., 1976, vol 21Google Scholar
  25. 25.
    Khonthon S, Morimoto S, Arai Y, Ohishi Y. Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Optical Materials, 2009, 31(8): 1262–1268CrossRefGoogle Scholar
  26. 26.
    Sun H T, Sakka Y, Gao H, Miwa Y, Fujii M, Shirahata N, Bai Z, Li J G. Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal. Journal of Materials Chemistry, 2011, 21(12): 4060–4063CrossRefGoogle Scholar
  27. 27.
    Sun H T, Sakka Y, Shirahata N, Gao H, Yonezawa T. Experfimental and theoretical studies of photoluminescence from Bi8 2+ and Bi5 3+ stabilized by [AlCl4]-in molecular crystals. Journal of Materials Chemistry, 2012, 22(25): 12837–12841CrossRefGoogle Scholar
  28. 28.
    Sun H T, Yonezawa T, Gillett-Kunnath MM, Sakka Y, Shirahata N, Rong Gui S C, Fujii M, Sevov S C. Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2–dimers. Journal of Materials Chemistry, 2012, 22(38): 20175–20178CrossRefGoogle Scholar
  29. 29.
    Sun H T, Matsushita Y, Sakka Y, Shirahata N, Tanaka M, Katsuya Y, Gao H, Kobayashi K. Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y. Journal of the American Chemical Society, 2012, 134(6): 2918–2921CrossRefGoogle Scholar
  30. 30.
    Peng M, Dong G, Wondraczek L, Zhang L, Zhang N, Qiu J. Discussion on the origin of NIR emission from Bi-doped materials. Journal of Non-Crystalline Solids, 2011, 357(11–13): 2241–2245CrossRefGoogle Scholar
  31. 31.
    Dianov E M, Firstov S V, Melkumov M. Bismuth-doped fiber lasers covering the spectral region 1150–1775 nm. In: Proceedings of Frontiers in Optics 2015, Optical Society of America, San Jose, California, 2015, LTu2H.1Google Scholar
  32. 32.
    Dianov E M, Firstov S V, Melkumov M A. Bismuth-doped optical fibers: advances and new developments. In: Proceedings of Workshop on Specialty Optical Fibers and Their Applications, Optical Society of America, Hong Kong, 2015, WT1A.4Google Scholar
  33. 33.
    https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id = 1504Google Scholar
  34. 34.
    https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id = 336Google Scholar
  35. 35.
    Bufetov I A, Melkumov M A, Firstov S V, Riumkin K E, Shubin A V, Khopin V F, Guryanov A N, Dianov E M. Bi-doped optical fibers and fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0903815CrossRefGoogle Scholar
  36. 36.
    Zhang J, Luo Y, Sathi Z M, Azadpeyma N, Peng G D. Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping. Optics Express, 2012, 20(18): 20623–20628CrossRefGoogle Scholar
  37. 37.
    Zhang J, Sathi Z M, Luo Y, Canning J, Peng G D. Toward an ultrabroadband emission source based on the bismuth and erbium codoped optical fiber and a single 830 nm laser diode pump. Optics Express, 2013, 21(6): 7786–7792CrossRefGoogle Scholar
  38. 38.
    Fukuchi Y, Maeda J. Characteristics of rational harmonic modelocked shortcavity fiber ring laser using a bismuthoxidebased erbiumdoped fiber and a bismuthoxidebased highly nonlinear fiber. Optics Express, 2011, 19(23): 22502–22509CrossRefGoogle Scholar
  39. 39.
    http://www2.eet.unsw.edu.au/photonics/NFF.htmlGoogle Scholar
  40. 40.
    Webb A S, Boyland A J, Standish R J, Yoo S, Sahu J K, Payne D N. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers. Journal of Non-Crystalline Solids, 2010, 356(18–19): 848–851CrossRefGoogle Scholar
  41. 41.
    Nagel S R, Macchesney J B, Walker K L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Journal of Quantum Electronics, 1982, 18(4): 459–476CrossRefGoogle Scholar
  42. 42.
    Dianov E M. Amplification in extended transmission bands. In: Proceedings of OFC 2012 OSA, Los Angeles, USA, 2012Google Scholar
  43. 43.
    Razdobreev I, Bigot L. On the multiplicity of bismuth active centres in germano-aluminosilicate preform. Optical Materials, 2011, 33(6): 973–977CrossRefGoogle Scholar
  44. 44.
    Peng G D, Luo Y, Zhang J, Wen J, Yan B, Canning J. Recent development of new active optical fibres for broadband photonic applications. In: Proceedings of 4th International Conference on Photonics, IEEE, 2013, 5–9Google Scholar
  45. 45.
    Luo Y, Zhang J, Zareanborji A, Wen J, Canning J, Peng G D. Developing Bi/Er/Al codoped optical fibre with high Bi concentration for ultrabroadband emission. In: Proceedings of 37th Australian Conference on Optical Fibre Technology, Engineering Australian, Sydney, 2012, 117Google Scholar
  46. 46.
    Sathi Z, Yang H, Luo Y, Zhang J, Peng G D. Ytterbium related effects in bismuth/erbium/ytterbium co-doped germanosilicate fibres. In: Proceedings of OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT 2014), IEEE, Melbourne, Australia, 2014, WEPS2–65Google Scholar
  47. 47.
    Wen J, Wang J, Dong Y, Chen N, Luo Y, Peng G D, Pang F, Chen Z, Wang T. Photoluminescence properties of Bi/Al-codoped silica optical fiberbased on atomic layer deposition method. Applied Surface Science, 2015, 349: 287–291CrossRefGoogle Scholar
  48. 48.
    Ni J, Peng G D, Wang C, Luo Y, Xiao G, Wei S, Liu H, Liu T. Study on pump optimizing for Bi/Er co-doped optical fiber. Measurement, 2016, 79: 160–163CrossRefGoogle Scholar
  49. 49.
    Zareanborji A, Yang H Y, Sathi Z, Luo Y H, Town G, Peng G D. Time-resolved fluorescence measurement based on spectroscopy and DSP techniques for Bi/Er codoped fibre characterization. In: Proceedings of OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT 2014), IEEE, Melbourne, Australia, 2014, TU6C–5Google Scholar
  50. 50.
    Zareanborji A, Yang H Y, Town G, Luo Y H, Peng G D. Simple and accurate fluorescence lifetime measurement scheme using traditional time-domain spectroscopy and modern digital signal processing. Journal of Lightwave Technology, 2016, 34(21): 5033–5043CrossRefGoogle Scholar
  51. 51.
    Firstov S V, Khopin V F, Bufetov I A, Firstova E G, Guryanov A N, Dianov E M. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Optics Express, 2011, 19 (20): 19551–19561CrossRefGoogle Scholar
  52. 52.
    Nykolak G, Becker P C, Shmulovich J, Wong Y H, DiGiovanni D J, Bruce A J. Concentration-dependent 4I13/2 lifetimes in Er3+-doped fibers and Er3+-doped planar waveguides. IEEE Photonics Technology Letters, 1993, 5(9): 1014–1016CrossRefGoogle Scholar
  53. 53.
    Zhou Y, Gai N, Wang J, Chen F, Yang G. Effect of Ce3+(Eu3+) codoping on the spectroscopic properties of Er3+ in bismuthgermanate glass. Optical Materials, 2009, 31(11): 1595–1599CrossRefGoogle Scholar
  54. 54.
    Digonnet M J F. Rare-earth-doped fiber lasers and amplifiers. 2nd, devised and expanded. New York: CRC Press, 2002, Chap. 2Google Scholar
  55. 55.
    Bufetov I A, Dianov E M. Bi-doped fiber lasers. Laser Physics Letters, 2009, 6(7): 487–504CrossRefGoogle Scholar
  56. 56.
    Fujimoto Y, Nakatsuka M. 27Al NMR structural study on aluminum coordination state in bismuth doped silica glass. Journal of Non-Crystalline Solids, 2006, 352(21–22): 2254–2258CrossRefGoogle Scholar
  57. 57.
    Riumkin K E, Melkumov M A, Varfolomeev I A, Shubin A V, Bufetov I A, Firstov S V, Khopin V F, Umnikov A A, Guryanov A N, Dianov E M. Excited-state absorption in various bismuth-doped fibers. Optics Letters, 2014, 39(8): 2503–2506CrossRefGoogle Scholar
  58. 58.
    Sathi Z M, Zhang J, Luo Y, Canning J, Peng G D. Spectral properties and role of aluminiumrelated bismuth active centre (BAC-Al) in bismuth and erbium co-doped fibres. Optical Materials Express, 2015, 5(5): 1195–1209CrossRefGoogle Scholar
  59. 59.
    Zareanborji A, Luo Y, Peng G D. Characterization and assessment of multiple bismuth active centres in Bi/Er doped fiber. In: Proceedings of 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), 2015, 1–5Google Scholar
  60. 60.
    Yan B, Luo Y, Zareanborji A, Xiao G, Peng G D, Wen J. Performance comparison of bismuth/erbium co-doped optical fibre (BEDF) by 830 nm and 980 nm pumping. Journal of Optics, 2016, 18(10): 105705CrossRefGoogle Scholar
  61. 61.
    Canning J, Liu W, Cook K. Annealing and regeneration in optical fibres. In: Proceedings of Asia Communications and Photonics Conference 2015, Optical Society of America, Hong Kong, 2015, AM3C.2Google Scholar
  62. 62.
    Wei S, Luo Y, Ding M, Cai F, Zhao Q, Peng G D. Annealing effects on bismuth active centers in Bi/Er co-doped fiber. In: Proceedings of Conference on Lasers and Electro-Optics, Optical Society of America, San Jose, California, 2016, JTh2A.75Google Scholar
  63. 63.
    Yan B, Luo Y, Sporea D, Mihai L, Negut D, Sang X, Wen J, Xiao G, Peng G. Gamma radiation-induced formation of bismuth related active centre in Bi/Er/Yb co-doped fibre. In: Proceedings of Asia Communications and Photonics Conference 2015, Optical Society of America, Hong Kong, 2015, ASu2A.56Google Scholar
  64. 64.
    Wen J, Liu W, Dong Y, Luo Y, Peng G D, Chen N, Pang F, Chen Z, Wang T. Radiation-induced photoluminescence enhancement of Bi/Al-codoped silica optical fibers via atomic layer deposition. Optics Express, 2015, 23(22): 29004–29013CrossRefGoogle Scholar
  65. 65.
    Sporea D, Mihai L, Neguţ D, Luo Y, Yan B, Ding M, Wei S, Peng G D. r irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres. Scientific Reports, 2016, 6(1): 29827CrossRefGoogle Scholar
  66. 66.
    Cook K, Shao L Y, Canning J, Wang T, Luo Y, Peng G D. Bragg gratings in few-mode Er/Al//Bi/P co-doped germanosilicate ringcore fibre. In: Proceedings of 22nd International Conference on Optical Fiber Sensors, SPIE, Beijing, China, 2012Google Scholar
  67. 67.
    Qi H, Luo Y, Yang H, Zhang J, Canning J, Peng G D. Photosensitivity, phase shifted grating and DFB fibre laser in bismuth/erbium co-doped germanosilicate optical fibre. In: Proceedings of 19th OptoElectronics and Communications Conference, OECC 2014 and the 39th Australian Conference on Optical Fibre Technology, ACOFT 2014, IEEE Computer Society, Melbourne, VIC, Australia, 2014, 495–497Google Scholar
  68. 68.
    Ding M, Wei S, Luo Y, Peng G D. Reversible photo-bleaching effect in Bi/Er co-doped optical fiber. In: Proceedings of Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Optical Society of America, Sydney, 2016, ATh2C.3Google Scholar
  69. 69.
    Xu B, Zhou S, Guan M, Tan D, Teng Y, Zhou J, Ma Z, Hong Z, Qiu J. Unusual luminescence quenching and reviving behavior of Bidoped germanate glasses. Optics Express, 2011, 19(23): 23436–23443CrossRefGoogle Scholar
  70. 70.
    Denker B I, Galagan B I, Musalitin A M, Shulman I L, Sverchkov S E, Dianov E M. Alternative ways to form IR luminescence centers in Bi-doped glass. Laser Physics, 2011, 21(4): 746–749CrossRefGoogle Scholar
  71. 71.
    Kononenko V, Pashinin V, Galagan B, Sverchkov S, Denker B, Konov V, Dianov E M. Activation of color centers in bismuth glass by femtosecond laser radiation. Laser Physics, 2011, 21(9): 1585–1592CrossRefGoogle Scholar
  72. 72.
    Xu J, Zhao H, Su L, Yu J, Zhou P, Tang H, Zheng L, Li H. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:α-BaB2O4 single crystal. Optics Express, 2010, 18(4): 3385–3391CrossRefGoogle Scholar
  73. 73.
    Wei S, Luo Y, Ding M, Cai F, Xiao G, Fan D, Zhao Q, Peng G D. Thermal effect on attenuation and luminescence of Bi/Er co-doped fiber. IEEE Photonics Technology Letters, 2017, 29(1): 43–46CrossRefGoogle Scholar
  74. 74.
    Yan B, Luo Y, Sporea D, Mihai L, Neguţ D, Ding M, Wang C, Wen J, Sang X, Peng G D. Enhancing gamma radiation effect in Bi/Er doped optical fibre by co-doping Yb. In: Proceedings of Asia Communications and Photonics Conference 2016, Optical Society of America, Wuhan, China, 2016Google Scholar
  75. 75.
    Ban C, Limberger H G, Bulatov I L, Dvoyrin V V, Mashinsky V M, Dianov E M. Infrared luminescence enhacement by UV-irradiation of H2-loaded Bi-Al-doped fiber. In: Proceedings of ECOC, 2009Google Scholar
  76. 76.
    Violakis G, Limberger H G, Mashinsky V M, Dianov E M. Dose dependence of luminescence increase in H2-loaded Bi-Al co-doped optical fibers by cw 244-nm and pulsed 193-nm laser irradiation. In: Proceedings of OFC, Optical Society of America, 2013Google Scholar
  77. 77.
    Song D, Zhang J, Fang S, Sun W, Sathi Z M, Luo Y, Peng G D. Bismuth and erbium co-doped optical fiber for a white light fiber source. Optics and Photonics Journal, 2013, 3(02): 175–178CrossRefGoogle Scholar
  78. 78.
    Yan B, Luo Y, Zareanborji A, Zhang J, Canning J, Peng G D. 1350–1470 nm optical amplification with bismuth/erbium co-doped fibre. In: Proceedings of Australia and New Zealand Conference on Optics and Photonics (ANZCOP) Conference 2013, Engineering Australia, Perth, Australia, 2013Google Scholar
  79. 79.
    Firstov S V, Khopin V F, Riumkin K E, Alyshev S V, Melkumov M A, Guryanov A N, Dianov E M. Bi/Er co-doped fibers as an active medium for optical amplifiers for the C-, L- and U-telecommunication bands. In: Proceedings of ECOC, 2016, 1–3Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Photonics & Optical Communications, School of Electrical EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Key Laboratory of Specialty Fiber Optics and Optical Access NetworksShanghai UniversityShanghaiChina
  3. 3.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.Key Lab of In-fiber Integrated Optics, Ministry of EducationHarbin Engineering UniversityHarbinChina
  5. 5.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations