Cellular and Molecular Bioengineering

, Volume 12, Issue 6, pp 583–597 | Cite as

Examination of Hydrogels and Mesenchymal Stem Cell Sources for Bioprinting of Artificial Osteogenic Tissues

  • Maximilian Wehrle
  • Fritz Koch
  • Stefan Zimmermann
  • Peter Koltay
  • Roland Zengerle
  • G. Björn Stark
  • Sandra Strassburg
  • Günter FinkenzellerEmail author
Original Article



Mesenchymal stem cells (MSCs) represent a very important cell source in the field of regenerative medicine and for bone and cartilage tissue engineering applications. Three-dimensional (3D) bioprinting has the potential to improve the classical tissue engineering concept as this technique allows the printing of cells with high spatial control of cell allocation within a 3D construct. In this study, we systematically compared different hydrogel blends for 3D bioprinting of MSCs by testing their cytocompatibility, ability to support osteogenic differentiation and their mechanical properties. In addition, we compared four different MSC populations isolated from different human tissues for their osteogenic differentiation capacity in combination with different hydrogels. The aim of this study was to identify the best MSC source and the most suitable hydrogel blend for extrusion-based bioprinting of 3D large-scaled osteogenic constructs.

Materials and Methods

MSCs were isolated from different tissues (umbilical cord, adipose tissue, bone marrow). MSCs were seed onto or into different hydrogels and analyzed for cell viability, proliferation and osteogenic differentiation. In addition, viscoelastic properties of the hydrogels were determined. MSC-containing cubes with the size of 1 cm3 were printed by means of 3D extrusion-based bioprinting and analyzed by (immuno)histology for cell survival and production of a calcified extracellular matrix.


Adipose tissue derived MSCs (ASCs) showed the highest osteogenic differentiation potential. A complex hydrogel blend consisting of fibrin, gelatin, hyaluronic acid, glycerol (F/G/H/Gl), tuned with hydroxyapatite, showed the best viscoelastic properties in combination with an excellent biocompatibility towards ASCs. This cell/hydrogel combination was used to bioprint 3D cubes. The cubes showed good mechanical stability and the printed ASCs were viable and able to calcify the hydrogel after bioprinting.


The combination of the HA-tuned F/G/H/Gl hydrogel blend along with ASCs can be considered as a very promising bioink for 3D bioprinting of artificial bone tissue equivalents for prospective applications in tissue engineering and regenerative medicine.


Biomaterial 3D bioprinting Hydrogel Mesenchymal stem cell Osteogenesis Biocompatibility 



This work was supported by funding through the Deutsche Forschungsgemeinschaft (FI 790/10-1 and KO 3910/1-1) and the Bundesministerium für Bildung und Forschung (03VNE1034C and 03VNE1034B). The authors would like to thank Brunhilde Baumer for excellent technical assistance, Matthias Schieker for providing immortalized mesenchymal stem cells and Anja Eisenhardt for critical reading of the manuscript.

Conflict of interest

Maximilian Wehrle, Fritz Koch, Stefan Zimmermann, Peter Koltay, Roland Zengerle, G. Björn Stark, Sandra Strassburg and Günter Finkenzeller declare that they have no conflicts of interest.

Ethical Approval

No human studies and no animal experiments were carried out by the authors of this article.

Supplementary material

12195_2019_588_MOESM1_ESM.tif (371 kb)
SUPPLEMENT FIGURE S1. Flow cytometric analysis of iMSCs, ASCs, ucMSCs and bmMSCs. All MSC types were positive for CD105, CD90 and CD73 and negative for CD45, CD14 and HLA-DR. Supplementary material 1 (TIFF 370 kb).


  1. 1.
    Alamdari, O. G., E. Seyedjafari, M. Soleimani, and N. Ghaemi. Micropatterning of ECM proteins on glass substrates to regulate cell attachment and proliferation. Avicenna J. Med. Biotechnol. 5(4):234–240, 2013.Google Scholar
  2. 2.
    Amati, E., S. Sella, O. Perbellini, A. Alghisi, M. Bernardi, K. Chieregato, C. Lievore, D. Peserico, M. Rigno, A. Zilio, M. Ruggeri, F. Rodeghiero, and G. Astori. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res. Ther. 8(1):14, 2017.CrossRefGoogle Scholar
  3. 3.
    Beeravolu, N., C. McKee, A. Alamri, S. Mikhael, C. Brown, M. Perez-Cruet, and G. R. Chaudhry. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J. Vis. Exp. 122:e55224, 2017.Google Scholar
  4. 4.
    Benning, L., L. Gutzweiler, K. Tröndle, J. Riba, R. Zengerle, P. Koltay, S. Zimmermann, G. B. Stark, and G. Finkenzeller. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J. Biomed. Mater. Res. A 105(12):3231–3241, 2017.CrossRefGoogle Scholar
  5. 5.
    Blum, J. S., R. H. Li, A. G. Mikos, and M. A. Barry. An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. J. Cell. Biochem. 80(4):532–537, 2001.CrossRefGoogle Scholar
  6. 6.
    Böcker, W., Z. Yin, I. Drosse, F. Haasters, O. Rossmann, M. Wierer, C. Popov, M. Locher, W. Mutschler, D. Docheva, and M. Schieker. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J. Cell. Mol. Med. 12(4):1347–1359, 2008.CrossRefGoogle Scholar
  7. 7.
    Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317, 2006.CrossRefGoogle Scholar
  8. 8.
    Duarte Campos, D. F., A. Blaeser, K. Buellesbach, K. S. Sen, W. Xun, W. Tillmann, and H. Fischer. Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv. Healthc. Mater. 5(11):1336–1345, 2016.CrossRefGoogle Scholar
  9. 9.
    Dumbleton, J., P. Agarwal, H. Huang, N. Hogrebe, R. Han, K. J. Gooch, and X. He. The effect of RGD peptide on 2D and miniaturized 3D culture of HEPM cells, MSCs, and ADSCs with alginate hydrogel. Cell. Mol. Bioeng. 9(2):277–288, 2016.CrossRefGoogle Scholar
  10. 10.
    Engebretson, B., Z. R. Mussett, and V. I. Sikavitsas. Tenocytic extract and mechanical stimulation in a tissue-engineered tendon construct increases cellular proliferation and ECM deposition. Biotechnol. J. 12(3):1600595, 2017.CrossRefGoogle Scholar
  11. 11.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefGoogle Scholar
  12. 12.
    Hu, L., J. Hu, J. Zhao, J. Liu, W. Ouyang, C. Yang, N. Gong, L. Du, A. Khanal, and L. Chen. Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. BioMed Res. Int. 2013:438243, 2013.Google Scholar
  13. 13.
    Hung, B. P., D. L. Hutton, K. L. Kozielski, C. J. Bishop, B. Naved, J. J. Green, A. I. Caplan, J. M. Gimble, A. H. Dorafshar, and W. L. Grayson. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells 33(9):2773–2784, 2015.CrossRefGoogle Scholar
  14. 14.
    Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3):312–319, 2016.CrossRefGoogle Scholar
  15. 15.
    Kolesky, D. B., K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA 113(12):3179–3184, 2016.CrossRefGoogle Scholar
  16. 16.
    Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49(3):328–337, 2000.CrossRefGoogle Scholar
  17. 17.
    Lecoeur, L., and J. P. Ouhayoun. In vitro induction of osteogenic differentiation from non-osteogenic mesenchymal cells. Biomaterials 18(14):989–993, 1997.CrossRefGoogle Scholar
  18. 18.
    Li, C.-Y., X.-Y. Wu, J.-B. Tong, X.-X. Yang, J.-L. Zhao, Q.-F. Zheng, G.-B. Zhao, and Z.-J. Ma. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 6:55, 2015.CrossRefGoogle Scholar
  19. 19.
    Mehlhorn, A. T., H. Schmal, S. Kaiser, G. Lepski, G. Finkenzeller, G. B. Stark, and N. P. Südkamp. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng. 12(6):1393–1403, 2006.CrossRefGoogle Scholar
  20. 20.
    Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.CrossRefGoogle Scholar
  21. 21.
    Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101(1):272–284, 2013.CrossRefGoogle Scholar
  22. 22.
    Olivares-Navarrete, R., E. M. Lee, K. Smith, S. L. Hyzy, M. Doroudi, J. K. Williams, K. Gall, B. D. Boyan, and Z. Schwartz. Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS ONE 12(1):e0170312, 2017.CrossRefGoogle Scholar
  23. 23.
    Oryan, A., A. Kamali, A. Moshiri, and M. Baghaban Eslaminejad. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 204(2):59–83, 2017.CrossRefGoogle Scholar
  24. 24.
    Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Bio-med. Eng. 60(3):691–699, 2013.CrossRefGoogle Scholar
  25. 25.
    Pavlin, D., S. B. Dove, R. Zadro, and J. Gluhak-Heinrich. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif. Tissue Int. 67(2):163–172, 2000.CrossRefGoogle Scholar
  26. 26.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.CrossRefGoogle Scholar
  27. 27.
    Rao, R. R., A. W. Peterson, and J. P. Stegemann. Osteogenic differentiation of adipose-derived and marrow-derived mesenchymal stem cells in modular protein/ceramic microbeads. J. Biomed. Mater. Res. A 101(6):1531–1538, 2013.CrossRefGoogle Scholar
  28. 28.
    Schneider, A. K., G. Cama, M. Ghuman, F. J. Hughes, and B. Gharibi. Sprouty 2, an early response gene regulator of FosB and mesenchymal stem cell proliferation during mechanical loading and osteogenic differentiation. J. Cell. Biochem. 118(9):2606–2614, 2017.CrossRefGoogle Scholar
  29. 29.
    Strassburg, S., N. Torio-Padron, G. Finkenzeller, A. Frankenschmidt, and G. B. Stark. Adipose-derived stem cells support lymphangiogenic parameters in vitro. J. Cell. Biochem. 117(11):2620–2629, 2016.CrossRefGoogle Scholar
  30. 30.
    Sunthar, P. Polymer rheology. In: Rheology of Complex Fluids, edited by J. Krishnan, A. Deshpande, and P. Kumar. New York: Springer, 2010.zbMATHGoogle Scholar
  31. 31.
    Tijore, A., J.-M. Behr, S. A. Irvine, V. Baisane, and S. Venkatraman. Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed. Microdevices 20(2):32, 2018.CrossRefGoogle Scholar
  32. 32.
    Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. 76(4):579–592, 1994.CrossRefGoogle Scholar
  33. 33.
    Witt, R., A. Weigand, A. M. Boos, A. Cai, D. Dippold, A. R. Boccaccini, D. W. Schubert, M. Hardt, C. Lange, A. Arkudas, R. E. Horch, and J. P. Beier. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 18(1):15, 2017.CrossRefGoogle Scholar
  34. 34.
    Zajdel, A., M. Kałucka, E. Kokoszka-Mikołaj, and A. Wilczok. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol. 64(2):365–369, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Laboratory for MEMS Applications, IMTEK‐Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  3. 3.Hahn-SchickardFreiburgGermany
  4. 4.Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgFreiburgGermany

Personalised recommendations