Advertisement

Probing Single-Cell Mechanical Allostasis Using Ultrasound Tweezers

  • Weiyi Qian
  • Weiqiang ChenEmail author
Article
  • 3 Downloads

Abstract

Introduction

In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an ‘ultrasound tweezers’-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed “actinin-sstFRET,” to monitor in situ single-cell allostasis in response to transient stimulation in real time.

Methods

The ultrasound tweezers utilize 1 Hz, 10-s transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis.

Results

By subjecting a 1 Hz, 10-s physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 min that caused them to adjust their contractility and actomyosin activities. The cellular machinery that underscores the vital role of CSK equilibrium in cellular mechanical allostasis, includes Ca2+ influx, remodeling of actomyosin CSK and contraction, and GTPase RhoA signaling. Mechanical allostasis was observed to be compromised in VSMCs from patients with type II diabetes mellitus (T2DM), which could potentiate an allostatic maladaptation.

Conclusions

By integrating tools that simultaneously permit localized mechanical perturbation and map actomyosin forces, we revealed distinct cellular mechanical allostasis profiles in our micromechanical system. Our findings of cell mechanical allostasis and maladaptation provide the potential for mechanophenotyping cells to reveal their pathogenic contexts and their biophysical mediators that underlie multi-etiological diseases such as diabetes, hypertension, or aging.

Keywords

Cellular allostasis Acoustic tweezers FRET Mechanotransduction Diabetes 

Notes

Acknowledgments

We acknowledge financial support from the Department of Mechanical and Aerospace Engineering at New York University, the American Heart Association Scientist Development Grant (16SDG31020038), the National Science Foundation (CBET 1701322), and the National Institute of Health (R21EB025406).

Conflict of interest

Weiyi Qian and Weiqiang Chen declare that they have no conflicts of interest.

Ethical Approval

This study does not involve any human studies and animal studies by any author in this article.

Supplementary material

12195_2019_578_MOESM1_ESM.avi (96 kb)
Supplementary material 1 (AVI 96 kb)
12195_2019_578_MOESM2_ESM.avi (1 mb)
Supplementary material 2 (AVI 1044 kb)

References

  1. 1.
    Alhussein, G., A. Shanti, I. A. Farhat, S. B. Timraz, N. S. Alwahab, Y. E. Pearson, M. N. Martin, N. Christoforou, and J. C. Teo. A spatiotemporal characterization method for the dynamic cytoskeleton. Cytoskeleton 73:221–232, 2016.CrossRefGoogle Scholar
  2. 2.
    Allingham, J. S., R. Smith, and I. Rayment. The structural basis of blebbistatin inhibition and specificity for myosin II. Nat. Struct. Mol. Biol. 12:378, 2005.CrossRefGoogle Scholar
  3. 3.
    Balasubramanian, L., C.-M. Lo, J. S. Sham, and K.-P. Yip. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction. Am. J. Physiol. Cell Physiol. 304:C382–C391, 2013.CrossRefGoogle Scholar
  4. 4.
    Beningo, K. A., K. Hamao, M. Dembo, Y.-L. Wang, and H. Hosoya. Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch. Biochem. Biophys. 456:224–231, 2006.CrossRefGoogle Scholar
  5. 5.
    Binnewies, M., E. W. Roberts, K. Kersten, V. Chan, D. F. Fearon, M. Merad, L. M. Coussens, D. I. Gabrilovich, S. Ostrand-Rosenberg, and C. C. Hedrick. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24:541–550, 2018.CrossRefGoogle Scholar
  6. 6.
    Blanchoin, L., R. Boujemaa-Paterski, C. Sykes, and J. Plastino. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94:235–263, 2014.CrossRefGoogle Scholar
  7. 7.
    Bonakdar, N., R. Gerum, M. Kuhn, M. Spörrer, A. Lippert, W. Schneider, K. E. Aifantis, and B. Fabry. Mechanical plasticity of cells. Nat. Mater. 15:1090, 2016.CrossRefGoogle Scholar
  8. 8.
    Broussard, J. A., B. Rappaz, D. J. Webb, and C. M. Brown. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 8:265, 2013.CrossRefGoogle Scholar
  9. 9.
    Brown, R., R. Prajapati, D. McGrouther, I. Yannas, and M. Eastwood. Tensional homeostasis in dermal fibroblasts: Mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175:323–332, 1998.CrossRefGoogle Scholar
  10. 10.
    Chen, W., S. G. Allen, W. Qian, Z. Peng, S. Han, X. Li, Y. Sun, C. Fournier, L. Bao, and R. H. Lam. Biophysical phenotyping and modulation of ALDH + inflammatory breast cancer stem-like cells. Small 15:1802891, 2019.CrossRefGoogle Scholar
  11. 11.
    Chen, D., Y. Sun, C. X. Deng, and J. Fu. Improving survival of disassociated human embryonic stem cells by mechanical stimulation using acoustic tweezing cytometry. Biophys. J. 108:1315–1317, 2015.CrossRefGoogle Scholar
  12. 12.
    Chen, D., Y. Sun, M. S. Gudur, Y.-S. Hsiao, Z. Wu, J. Fu, and C. X. Deng. Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells. Biophys. J. 108:32–42, 2015.CrossRefGoogle Scholar
  13. 13.
    Chowdhury, F., S. Na, D. Li, Y.-C. Poh, T. S. Tanaka, F. Wang, and N. Wang. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9:82, 2010.CrossRefGoogle Scholar
  14. 14.
    Chrzanowska-Wodnicka, M., and K. Burridge. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133:1403–1415, 1996.CrossRefGoogle Scholar
  15. 15.
    Collinsworth, A. M., C. E. Torgan, S. N. Nagda, R. J. Rajalingam, W. E. Kraus, and G. A. Truskey. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch. Cell Tissue Res. 302:243–251, 2000.CrossRefGoogle Scholar
  16. 16.
    Coste, B., B. Xiao, J. S. Santos, R. Syeda, J. Grandl, K. S. Spencer, S. E. Kim, M. Schmidt, J. Mathur, and A. E. Dubin. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176, 2012.CrossRefGoogle Scholar
  17. 17.
    Dietzel, I., and U. Heinemann. Dynamic variations of the brain cell microenvironment in relation to neuronal hyperactivity. Ann. N. Y. Acad. Sci. 481:72–84, 1986.CrossRefGoogle Scholar
  18. 18.
    Du Roure, O., A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA 102:2390–2395, 2005.CrossRefGoogle Scholar
  19. 19.
    Fan, Z., Y. Sun, D. Chen, D. Tay, W. Chen, C. X. Deng, and J. Fu. Acoustic tweezing cytometry for live-cell subcellular modulation of intracellular cytoskeleton contractility. Sci. Rep. 3:2176, 2013.CrossRefGoogle Scholar
  20. 20.
    Fan, Z., X. Xue, R. Perera, S. Nasr Esfahani, A. A. Exner, J. Fu, and C. X. Deng. Acoustic actuation of integrin-bound microbubbles for mechanical phenotyping during differentiation and morphogenesis of human embryonic stem cells. Small 14:1803137, 2018.CrossRefGoogle Scholar
  21. 21.
    Faust, U., N. Hampe, W. Rubner, N. Kirchgessner, S. Safran, B. Hoffmann, and R. Merkel. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS ONE 6:e28963, 2011.CrossRefGoogle Scholar
  22. 22.
    Fu, J., Y.-K. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733, 2010.CrossRefGoogle Scholar
  23. 23.
    Gattazzo, F., A. Urciuolo, and P. Bonaldo. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 2506–2519:2014, 1840.Google Scholar
  24. 24.
    Ghigo, A., M. Laffargue, M. Li, and E. Hirsch. PI3 K and calcium signaling in cardiovascular disease. Circ. Res. 121:282–292, 2017.CrossRefGoogle Scholar
  25. 25.
    Goldstein, D. S., and B. McEwen. Allostasis, homeostats, and the nature of stress. Stress 5:55–58, 2002.CrossRefGoogle Scholar
  26. 26.
    Gunst, S. J., and W. Zhang. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am. J. Physiol. Cell Physiol. 295:C576–C587, 2008.CrossRefGoogle Scholar
  27. 27.
    Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121:496–503, 2008.CrossRefGoogle Scholar
  28. 28.
    Heureaux, J., D. Chen, V. L. Murray, C. X. Deng, and A. P. Liu. Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress. Cell. Mol. Bioeng. 7:307–319, 2014.CrossRefGoogle Scholar
  29. 29.
    Hoffman, B. D., C. Grashoff, and M. A. Schwartz. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316, 2011.CrossRefGoogle Scholar
  30. 30.
    Hsu, H.-J., C.-F. Lee, and R. Kaunas. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4:e4853, 2009.CrossRefGoogle Scholar
  31. 31.
    Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802, 2014.CrossRefGoogle Scholar
  32. 32.
    Kaksonen, M., C. P. Toret, and D. G. Drubin. A modular design for the clathrin-and actin-mediated endocytosis machinery. Cell 123:305–320, 2005.CrossRefGoogle Scholar
  33. 33.
    Kato, S., T. Osa, and T. Ogasawara. Kinetic model for isometric contraction in smooth muscle on the basis of myosin phosphorylation hypothesis. Biophys. J. 46:35, 1984.CrossRefGoogle Scholar
  34. 34.
    Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl. Acad. Sci. USA 102:15895–15900, 2005.CrossRefGoogle Scholar
  35. 35.
    Kim, T.-J., C. Joo, J. Seong, R. Vafabakhsh, E. L. Botvinick, M. W. Berns, A. E. Palmer, N. Wang, T. Ha, and E. Jakobsson. Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs. Elife 4:e04876, 2015.CrossRefGoogle Scholar
  36. 36.
    Kranenburg, O., M. Poland, M. Gebbink, L. Oomen, and W. H. Moolenaar. Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J. Cell Sci. 110:2417–2427, 1997.Google Scholar
  37. 37.
    Labernadie, A., T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, and L. Albertazzi. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19:224, 2017.CrossRefGoogle Scholar
  38. 38.
    Lam, R. H., Y. Sun, W. Chen, and J. Fu. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12:1865–1873, 2012.CrossRefGoogle Scholar
  39. 39.
    Livne, A., E. Bouchbinder, and B. Geiger. Cell reorientation under cyclic stretching. Nat. Commun. 5:3938, 2014.CrossRefGoogle Scholar
  40. 40.
    Mann, J. M., R. H. Lam, S. Weng, Y. Sun, and J. Fu. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740, 2012.CrossRefGoogle Scholar
  41. 41.
    McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840:33–44, 1998.CrossRefGoogle Scholar
  42. 42.
    McEwen, B. S., and J. C. Wingfield. The concept of allostasis in biology and biomedicine. Horm. Behav. 43:2–15, 2003.CrossRefGoogle Scholar
  43. 43.
    Meng, F., and F. Sachs. Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J. Cell Sci. 124:261–269, 2011.CrossRefGoogle Scholar
  44. 44.
    Milewicz, D. M., K. M. Trybus, D.-C. Guo, H. L. Sweeney, E. Regalado, K. Kamm, and J. T. Stull. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler. Thromb. Vasc. Biol. 37:26–34, 2017.CrossRefGoogle Scholar
  45. 45.
    Murrell, M., P. W. Oakes, M. Lenz, and M. L. Gardel. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16:486, 2015.CrossRefGoogle Scholar
  46. 46.
    Palmer, A. E., and R. Y. Tsien. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1:1057, 2006.CrossRefGoogle Scholar
  47. 47.
    Pasterkamp, G., D. P. de Kleijn, and C. Borst. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc. Res. 45:843–852, 2000.CrossRefGoogle Scholar
  48. 48.
    Porter, K. E., and K. Riches. The vascular smooth muscle cell: a therapeutic target in type 2 diabetes? Clin. Sci. 125:167–182, 2013.CrossRefGoogle Scholar
  49. 49.
    Pyle, A. L., and P. P. Young. Atheromas feel the pressure: biomechanical stress and atherosclerosis. Am. J. Pathol. 177:4–9, 2010.CrossRefGoogle Scholar
  50. 50.
    Qian, W., L. Gong, X. Cui, Z. Zhang, A. Bajpai, C. Liu, A. B. Castillo, J. C. Teo, and W. Chen. Nanotopographic regulation of human mesenchymal stem cell osteogenesis. ACS Appl. Mater. Interfaces. 9:41794–41806, 2017.CrossRefGoogle Scholar
  51. 51.
    Raftopoulou, M., and A. Hall. Cell migration: Rho GTPases lead the way. Dev. Biol. 265:23–32, 2004.CrossRefGoogle Scholar
  52. 52.
    Rahimzadeh, J., F. Meng, F. Sachs, J. Wang, D. Verma, and S. Z. Hua. Real-time observation of flow-induced cytoskeletal stress in living cells. Am. J. Physiol. Cell Physiol. 301:C646–C652, 2011.CrossRefGoogle Scholar
  53. 53.
    Retailleau, K., F. Duprat, M. Arhatte, S. S. Ranade, R. Peyronnet, J. R. Martins, M. Jodar, C. Moro, S. Offermanns, and Y. Feng. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep. 13:1161–1171, 2015.CrossRefGoogle Scholar
  54. 54.
    Riches, K., P. Warburton, D. J. O’Regan, N. A. Turner, and K. E. Porter. Type 2 diabetes impairs venous, but not arterial smooth muscle cell function: possible role of differential RhoA activity. Cardiovasc. Revasc. Med. 15:141–148, 2014.CrossRefGoogle Scholar
  55. 55.
    Ritsma, L., S. I. Ellenbroek, A. Zomer, H. J. Snippert, F. J. de Sauvage, B. D. Simons, H. Clevers, and J. van Rheenen. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507:362, 2014.CrossRefGoogle Scholar
  56. 56.
    Schwartz, M. W., R. J. Seeley, M. H. Tschöp, S. C. Woods, G. J. Morton, M. G. Myers, and D. D’alessio. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503:59, 2013.CrossRefGoogle Scholar
  57. 57.
    Shao, Y., J. M. Mann, W. Chen, and J. Fu. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Integr. Biol. 6:300–311, 2014.CrossRefGoogle Scholar
  58. 58.
    Shyu, K.-G. Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin. Sci. 116:377–389, 2009.CrossRefGoogle Scholar
  59. 59.
    Sukharev, S., M. Betanzos, C.-S. Chiang, and H. R. Guy. The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720, 2001.CrossRefGoogle Scholar
  60. 60.
    Sun, Z., S. S. Guo, and R. Fässler. Integrin-mediated mechanotransduction. J. Cell Biol. 215:445–456, 2016.CrossRefGoogle Scholar
  61. 61.
    Topal, T., X. Hong, X. Xue, Z. Fan, N. Kanetkar, J. T. Nguyen, J. Fu, C. X. Deng, and P. H. Krebsbach. Acoustic tweezing cytometry induces rapid initiation of human embryonic stem cell differentiation. Sci. Rep. 8:12977, 2018.CrossRefGoogle Scholar
  62. 62.
    Waddingham, M. T., A. J. Edgley, H. Tsuchimochi, D. J. Kelly, M. Shirai, and J. T. Pearson. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J. Diabetes 6:943, 2015.CrossRefGoogle Scholar
  63. 63.
    Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434:1040, 2005.CrossRefGoogle Scholar
  64. 64.
    Wang, Y., J. Y.-J. Shyy, and S. Chien. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng. 10:1–38, 2008.CrossRefGoogle Scholar
  65. 65.
    Wang, Y., and N. Wang. FRET and mechanobiology. Integr. Biol. 1:565–573, 2009.CrossRefGoogle Scholar
  66. 66.
    Webster, K. D., W. P. Ng, and D. A. Fletcher. Tensional homeostasis in single fibroblasts. Biophys. J. 107:146–155, 2014.CrossRefGoogle Scholar
  67. 67.
    Weng, S., Y. Shao, W. Chen, and J. Fu. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nat. Mater. 15:961, 2016.CrossRefGoogle Scholar
  68. 68.
    Xue, X., X. Hong, Z. Li, C. X. Deng, and J. Fu. Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation. Biomaterials 134:22–30, 2017.CrossRefGoogle Scholar
  69. 69.
    Xue, X., Y. Sun, A. M. Resto-Irizarry, Y. Yuan, K. M. A. Yong, Y. Zheng, S. Weng, Y. Shao, Y. Chai, and L. Studer. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17:633–641, 2018.CrossRefGoogle Scholar
  70. 70.
    Yang, M. T., J. Fu, Y.-K. Wang, R. A. Desai, and C. S. Chen. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat. Protoc. 6:187, 2011.CrossRefGoogle Scholar
  71. 71.
    Yang, M. T., D. H. Reich, and C. S. Chen. Measurement and analysis of traction force dynamics in response to vasoactive agonists. Integr. Biol. 3:663–674, 2011.CrossRefGoogle Scholar
  72. 72.
    Zhang, Y., A. Gordon, W. Qian, and W. Chen. Engineering nanoscale stem cell niche: Direct stem cell behavior at cell–matrix interface. Adv. Healthc. Mater. 4:1900–1914, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynUSA
  2. 2.Department of Biomedical EngineeringNew York UniversityBrooklynUSA

Personalised recommendations