Ultrasound Enhanced Anti-tumor Effect of Temozolomide in Glioblastoma Cells and Glioblastoma Mouse Model
Abstract
Introduction
Glioblastoma is the most aggressive cancer that begins within the brain. In clinic, temozolomide was used as anti-tumor drugs for glioblastoma chemotherapy, but showed limited effect. Therefore, how to improve the effect of temozolomide to glioblastoma is urgently needed.
Methods
The cell viability of T98G cells was detected by cell counting kit-8 (CCK-8) assay. Apoptosis was detected using the Annexin-V-FITC & PI apoptosis kit and assessed by flow cytometry. The expression levels of Bax, B cell lymphoma 2 (Bcl-2), phos-Jun N-terminal kinases (JNK), phos-extracellular signal–regulated kinases (ERK) and phos-p38 were determined by western blot. The effect of ultrasound and temozolomide combination in mice was determined by survival analysis.
Results
Compared with temozolomide treatment alone, ultrasound and temozolomide combination inhibited the cell viability, and promotes apoptosis of human glioblastoma T98G cells. Bax level increased, while Bcl-2 level decreased in combination group. Mechanically, combination treatment promoted apoptosis via JNK and p38 pathways. In mouse glioblastoma model, combination treatment improved overall survival.
Conclusions
Ultrasound enhanced anti-tumor effect of temozolomide in glioblastoma cells via JNK and p38 pathways.
Keywords
Glioblastoma Ultrasound Temozolomide Apoptosis JNK and p38 pathwaysNotes
Conflict of interest
Jie Xue, Yuanyuan Wu, and Na Liu declare that declare that they have no conflicts of interest.
Ethical Standards
No human studies were carried out by the authors for this article. All animal studies were carried out in accordance with the institutional guidelines and approved by the ethics committee of Yantai Yuhuangding Hospital.
References
- 1.Adamson, C., O. O. Kanu, A. I. Mehta, C. Di, N. Lin, A. K. Mattox, and D. D. Bigner. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083, 2009.CrossRefGoogle Scholar
- 2.Alifieris, C., and D. T. Trafalis. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82, 2015.CrossRefGoogle Scholar
- 3.Areeb, Z., S. S. Stylli, R. Koldej, D. S. Ritchie, T. Siegal, A. P. Morokoff, A. H. Kaye, and R. B. Luwor. MicroRNA as potential biomarkers in Glioblastoma. J Neurooncol 125:237–248, 2015.CrossRefGoogle Scholar
- 4.Banks, W. A. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15:275–292, 2016.CrossRefGoogle Scholar
- 5.Buie, L. W., and J. Valgus. Bevacizumab: a treatment option for recurrent glioblastoma multiforme. Ann Pharmacother 42:1486–1490, 2008.CrossRefGoogle Scholar
- 6.Chen, C., T. Xu, Y. Lu, J. Chen, and S. Wu. The efficacy of temozolomide for recurrent glioblastoma multiforme. Eur J Neurol 20:223–230, 2013.CrossRefGoogle Scholar
- 7.Daneman, R., and A. Prat. The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412, 2015.CrossRefGoogle Scholar
- 8.Goasdoue, K., S. M. Miller, P. B. Colditz, and S. T. Bjorkman. Review: the blood-brain barrier; protecting the developing fetal brain. Placenta 54:111–116, 2017.CrossRefGoogle Scholar
- 9.Iwamoto, F. M., L. E. Abrey, K. Beal, P. H. Gutin, M. K. Rosenblum, V. E. Reuter, L. M. DeAngelis, and A. B. Lassman. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73:1200–1206, 2009.CrossRefGoogle Scholar
- 10.Kim, S. S., A. Rait, E. Kim, J. DeMarco, K. F. Pirollo, and E. H. Chang. Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma. Cancer Lett 369:250–258, 2015.CrossRefGoogle Scholar
- 11.Kovacs, Z. I., S. Kim, N. Jikaria, F. Qureshi, B. Milo, B. K. Lewis, M. Bresler, S. R. Burks, and J. A. Frank. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci USA 114:E75–E84, 2017.CrossRefGoogle Scholar
- 12.Kuroki, M., K. Hachimine, H. Abe, H. Shibaguchi, M. Kuroki, S. Maekawa, J. Yanagisawa, T. Kinugasa, T. Tanaka, and Y. Yamashita. Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Res 27:3673–3677, 2007.Google Scholar
- 13.McHale, A. P., J. F. Callan, N. Nomikou, C. Fowley, and B. Callan. Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol 880:429–450, 2016.CrossRefGoogle Scholar
- 14.Palmieri, D., R. Duchnowska, S. Woditschka, E. Hua, Y. Qian, W. Biernat, K. Sosinska-Mielcarek, B. Gril, A. M. Stark, S. M. Hewitt, D. J. Liewehr, S. M. Steinberg, J. Jassem, and P. S. Steeg. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin Cancer Res 20:2727–2739, 2014.CrossRefGoogle Scholar
- 15.Park, K. S., D. S. Kim, C. Ko, S. J. Lee, S. H. Oh, and S. Y. Kim. TNF-alpha mediated NF-kappaB activation is constantly extended by transglutaminase 2. Front Biosci (Elite Ed) 3:341–354, 2011.Google Scholar
- 16.Piunti, A., R. Hashizume, M. A. Morgan, E. T. Bartom, C. M. Horbinski, S. A. Marshall, E. J. Rendleman, Q. Ma, Y. H. Takahashi, A. R. Woodfin, A. V. Misharin, N. A. Abshiru, R. R. Lulla, A. M. Saratsis, N. L. Kelleher, C. D. James, and A. Shilatifard. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23:493–500, 2017.CrossRefGoogle Scholar
- 17.Preusser, M., M. Lim, D. A. Hafler, D. A. Reardon, and J. H. Sampson. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514, 2015.CrossRefGoogle Scholar
- 18.Serlin, Y., I. Shelef, B. Knyazer, and A. Friedman. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 38:2–6, 2015.CrossRefGoogle Scholar
- 19.Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2016. CA Cancer J Clin 66:7–30, 2016.CrossRefGoogle Scholar
- 20.Sun, H., W. Ge, X. Gao, S. Wang, S. Jiang, Y. Hu, M. Yu, and S. Hu. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS ONE 10:e0137980, 2015.CrossRefGoogle Scholar
- 21.Trendowski, M. The promise of sonodynamic therapy. Cancer Metastasis Rev 33:143–160, 2014.CrossRefGoogle Scholar
- 22.Wang, P., C. Li, X. Wang, W. Xiong, X. Feng, Q. Liu, A. W. Leung, and C. Xu. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. Ultrason Sonochem 23:116–127, 2015.CrossRefGoogle Scholar
- 23.Weil, R. J. Glioblastoma multiforme–treating a deadly tumor with both strands of RNA. PLoS Med 3:e31, 2006.CrossRefGoogle Scholar
- 24.Wirsching, H. G., E. Galanis, and M. Weller. Glioblastoma. Handb Clin Neurol 134:381–397, 2016.CrossRefGoogle Scholar
- 25.Woehrer, A., L. Bauchet, and J. S. Barnholtz-Sloan. Glioblastoma survival: has it improved? Evidence from population-based studies. Curr Opin Neurol 27:666–674, 2014.Google Scholar
- 26.Zarnett, O. J., A. Sahgal, J. Gosio, J. Perry, M. S. Berger, S. Chang, and S. Das. Treatment of elderly patients with glioblastoma: a systematic evidence-based analysis. JAMA Neurol 72:589–596, 2015.CrossRefGoogle Scholar
- 27.Zhao, Z., A. R. Nelson, C. Betsholtz, and B. V. Zlokovic. Establishment and dysfunction of the blood-brain barrier. Cell 163:1064–1078, 2015.CrossRefGoogle Scholar
- 28.Zorzan, M., E. Giordan, M. Redaelli, A. Caretta, and C. Mucignat-Caretta. Molecular targets in glioblastoma. Future Oncol 11:1407–1420, 2015.CrossRefGoogle Scholar