Cellular and Molecular Bioengineering

, Volume 12, Issue 1, pp 41–51 | Cite as

A Novel Nanoconjugate of Landomycin A with C60 Fullerene for Cancer Targeted Therapy: In Vitro Studies

  • V. Bilobrov
  • V. Sokolova
  • S. Prylutska
  • R. Panchuk
  • O. Litsis
  • V. Osetskyi
  • M. EvstigneevEmail author
  • Yu. PrylutskyyEmail author
  • M. Epple
  • U. Ritter
  • J. Rohr



Landomycins are a subgroup of angucycline antibiotics that are produced by Streptomyces bacteria and possess strong antineoplastic potential. Literature data suggest that enhancement of the therapeutic activity of this drug may be achieved by means of creating specific drug delivery systems. Here we propose to adopt C60 fullerene as flexible and stable nanocarrier for landomycin delivery into tumor cells.


The methods of molecular modelling, dynamic light scattering and Fourier transform infrared spectroscopy were used to study the assembly of C60 fullerene and the anticancer drug Landomycin A (LA) in aqueous solution. Cytotoxic activity of this nanocomplex was studied in vitro towards two cancer cell lines in comparison to human mesenchymal stem cells (hMSCs) using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test and a live/dead assay. The morphology of the cells incubated with fullerene–drug nanoparticles and their uptake into target cells were studied by scanning electron microscopy and fluorescence light microscopy.


The viability of primary cells (hMSCs, as a model for healthy cells) and cancer cell lines (human osteosarcoma cells, MG-63, and mouse mammary cells, 4T1, as models for cancer cells) was studied after incubation with water-soluble C60 fullerenes, LA and the mixture C60 + LA. The C60 + LA nanocomplex in contrast to LA alone showed higher toxicity towards cancer cells and lower toxicity towards normal cells, whereas the water-soluble C60 fullerenes at the same concentration were not toxic for the cells.


The obtained physico-chemical data indicate a complexation between the two compounds, leading to the formation of a C60 + LA nanocomposite. It was concluded that immobilization of LA on C60 fullerene enhances selectivity of action of this anticancer drug in vitro, indicating on possibility of further preclinical studies of novel C60 + LA nanocomposites on animal tumor models.


C60 fullerene Landomycin A Complexation Cytotoxicity Membranotropic effect Molecular modelling Dynamic light scattering Fourier transform infrared spectroscopy Scanning electron microscopy Fluorescence microscopy 



Mouse mammary cells


C60 fullerene aqueous solution




4′, 6 Diamidino 2 phenylindole


Dynamic light scattering


Dulbecco’s modified eagle medium


Dimethyl sulfoxide




Enhanced permeability and retention


Fetal calf serum


Fourier transform infrared spectroscopy


Human mesenchymal stem cells


Landomycin A


Human osteosarcoma cells


3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide


Phosphate-buffered saline


Polydispersity index


Scanning electron microscopy



V. Bilobrov is grateful to DAAD for financial support within the framework of the Leonhard-Euler Program. This work was partially supported by STCU Project N6256 and state support to Leading Research Group 5889.2018.3.

Conflict of interest

V. Bilobrov, V. Sokolova, S. Prylutska, R. Panchuk, O. Litsis, V. Osetskyi, M. Evstigneev, Yu. Prylutskyy, M. Epple, U. Ritter, J. Rohr declare that they have no conflicts of interest.

Ethical Approval

Neither human studies, nor animal studies were carried out by the authors for this article.

Authors’ Contributions

The work presented here was carried out in collaboration between all the authors. RP, JR, VO and YP created and characterized nanomaterials. VB and VS performed in vitro and fluorescence microscopy studies. OL and SP characterized nanomaterials using FTIR analysis. ME performed the computer simulations. UR synthesized and characterized C60FAS. M. Epple and YP coordinated the experimental work, analyzed the data, performed the statistical analysis, and wrote the manuscript. All authors discussed the results and commented on the manuscript. All authors read and approved the final manuscript.


  1. 1.
    Afanasieva, K. S., S. V. Prylutska, A. V. Lozovik, K. I. Bogutska, A. V. Sivolob, Yu. I. Prylutskyy, et al. C60 fullerene prevents genotoxic effect of doxorubicin on human lymphocytes in vitro. Ukr. Biochem. J. 87:91–98, 2015.CrossRefGoogle Scholar
  2. 2.
    Augustine, S., J. Singh, M. Srivastava, M. Sharma, A. Das, and B. D. Malhotra. Recent advances in carbon based nanosystems for cancer theranostics. Biomater. Sci. 5:901–952, 2017.CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, P., A. Paraskar, S. Soni, R. A. Mashelkar, and S. Sengupta. Fullerenol cytotoxic conjugates for cancer chemotherapy. ACS Nano 3:2505–2514, 2009.CrossRefGoogle Scholar
  4. 4.
    Elshahawi, S. I., K. A. Shaaban, M. K. Kharel, and J. S. Thorson. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44:7591–7697, 2015.CrossRefGoogle Scholar
  5. 5.
    Eswaran, S. V. Water soluble nanocarbon materials: a panacea for all? Curr. Sci. 114:1846–1850, 2018.Google Scholar
  6. 6.
    Evstigneev, M. P. Hetero-association of aromatic molecules in aqueous solution. Int. Rev. Phys. Chem. 33:229–273, 2014.CrossRefGoogle Scholar
  7. 7.
    Falk, M., M. Gil, and N. Iza. Self-association of caffeine in aqueous solution: an FTIR study. Can. J. Chem. 68:1293–1299, 1990.CrossRefGoogle Scholar
  8. 8.
    Foley, S., C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294:116–119, 2002.CrossRefGoogle Scholar
  9. 9.
    Franskevych, D., K. Palyvoda, D. Petukhov, S. Prylutska, I. Grynyuk, C. Schuetze, et al. Fullerene C60 penetration into leukemic cells and its photoinduced cytotoxic effects. Nanoscale Res. Lett. 12:40, 2017.CrossRefGoogle Scholar
  10. 10.
    Goodarzi, S., T. Da Ros, J. Conde, F. Sefat, and M. Mozafari. Fullerenes: biomedical engineers get to revisit an old friend. Mater. Today 20:460–480, 2017.CrossRefGoogle Scholar
  11. 11.
    Guo, X., R. Ding, Y. Zhang, L. Ye, X. Liu, C. Chen, et al. Dual role of photosensitizer and carrier material of fullerene in micelles for chemo–photodynamic therapy of cancer. J. Pharm. Sci. 103:3225–3234, 2014.CrossRefGoogle Scholar
  12. 12.
    Henkel, T., J. Rohr, J. M. Beale, and L. Schwenen. Landomycins, new angucycline antibiotics from Streptomyces sp. I. structural studies on landomycins A–D. J. Antibiot. 43:492–503, 1990.CrossRefGoogle Scholar
  13. 13.
    Ji, Z., H. Sun, H. Wang, Q. Xie, Y. Liu, and Z. Wang. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res. 8:53–63, 2006.CrossRefGoogle Scholar
  14. 14.
    Joshi, M., P. Kumar, R. Kumar, G. Sharma, B. Singh, V. Katare, et al. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater. Sci. Eng. C 75:1376–1388, 2017.CrossRefGoogle Scholar
  15. 15.
    Kumari, P., B. Ghosh, and S. Biswas. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 24:179–191, 2016.CrossRefGoogle Scholar
  16. 16.
    Lapin, N. A., L. A. Vergara, Y. Mackeyev, J. M. Newton, S. A. Dilliard, L. J. Wilson, et al. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int. J. Nanomed. 12:8289–8307, 2017.CrossRefGoogle Scholar
  17. 17.
    Liang, X. J., H. Meng, Y. Z. Wang, H. Y. He, J. Meng, J. Lu, et al. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc. Natl. Acad. Sci. USA 107:7449–7454, 2010.CrossRefGoogle Scholar
  18. 18.
    Lu, C. Y., S. D. Yao, W. Z. Lin, W. F. Wang, N. Y. Lin, Y. P. Tong, et al. Studies on the fullerol of C60 in aqueous solution with laser photolysis and pulse radiolysis. Radiat. Phys. Chem. 53:137–143, 1998.CrossRefGoogle Scholar
  19. 19.
    Luzhetskyy, A., L. Zhu, M. Gibson, M. Fedoryshyn, C. Dürr, C. Hofmann, et al. Generation of novel landomycins M and O through targeted gene disruption. ChemBioChem 6:675–678, 2005.CrossRefGoogle Scholar
  20. 20.
    Lynchak, O. V., Yu. I. Prylutskyy, V. K. Rybalchenko, O. A. Kyzyma, D. Soloviov, V. V. Kostjukov, et al. Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Res. Lett. 12:8, 2017.CrossRefGoogle Scholar
  21. 21.
    Lyon, D. Y., L. K. Adams, J. C. Falkner, and P. J. Alvarez. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. J. Environ. Sci. Technol. 40:4360–4366, 2006.CrossRefGoogle Scholar
  22. 22.
    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207, 2001.CrossRefGoogle Scholar
  23. 23.
    Markovic, Z., B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28:5437–5448, 2007.CrossRefGoogle Scholar
  24. 24.
    Matsumura, Y., and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392, 1986.Google Scholar
  25. 25.
    Misra, C., N. Thotakura, R. Kumar, B. Singh, G. Sharma, O. P. Katare, et al. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes. Mater. Sci. Eng. C 76:501–508, 2017.CrossRefGoogle Scholar
  26. 26.
    Mitchell, M. J., R. K. Jain, and R. Langer. Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17:659–675, 2017.CrossRefGoogle Scholar
  27. 27.
    Montellano, A., T. Da Ros, A. Bianco, and M. Prato. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041, 2011.CrossRefGoogle Scholar
  28. 28.
    Panchuk, R. R., L. V. Lehka, A. Terenzi, B. P. Matselyukh, J. Rohr, and A. K. Jha. Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic. Biol. Med. 106:134–147, 2017.CrossRefGoogle Scholar
  29. 29.
    Prylutska, S. V., O. P. Matyshevska, I. I. Grynyuk, Y. I. Prylutskyy, U. Ritter, and P. Scharff. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst. 468:265–274, 2007.CrossRefGoogle Scholar
  30. 30.
    Prylutska, S. V., O. P. Matyshevska, A. A. Golub, Y. I. Prylutskyy, G. P. Potebnya, U. Ritter, et al. Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater. Sci. Eng. C 27:1121–1124, 2007.CrossRefGoogle Scholar
  31. 31.
    Prylutska, S. V., I. I. Grynyuk, S. M. Grebinyk, O. P. Matyshevska, Y. I. Prylutskyy, U. Ritter, et al. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mater. Wiss. Werkst. 40:238–241, 2009.CrossRefGoogle Scholar
  32. 32.
    Prylutska, S., I. Grynyuk, O. Matyshevska, Yu. Prylutskyy, M. Evstigneev, P. Scharff, et al. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R&D 14:333–340, 2014.CrossRefGoogle Scholar
  33. 33.
    Prylutska, S., L. Skivka, G. Didenko, Yu. Prylutskyy, M. Evstigneev, G. Potebnya, et al. Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res. Lett. 10:499, 2015.CrossRefGoogle Scholar
  34. 34.
    Prylutska, S., R. Panchuk, G. Gołuński, L. Skivka, Yu. Prylutskyy, V. Hurmach, et al. C60 fullerene enhances cisplatin anticancer activity and overcomes tumor cells drug resistance. Nano Res. 10:652–671, 2017.CrossRefGoogle Scholar
  35. 35.
    Prylutska, S. V., S. V. Politenkova, K. S. Afanasieva, V. F. Korolovych, K. I. Bogutska, A. V. Sivolob, et al. A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity. Beilstein J. Nanotechnol. 8:1494–1501, 2017.CrossRefGoogle Scholar
  36. 36.
    Prylutskyy, Yu. I., V. M. Yashchuk, K. M. Kushnir, A. A. Golub, V. A. Kudrenko, S. V. Prylutska, et al. Biophysical studies of fullerene-based composite for bio-nanotechnology. Mater. Sci. Eng. C 23:109–111, 2003.CrossRefGoogle Scholar
  37. 37.
    Prylutskyy, Yu. I., M. P. Evstigneev, I. S. Pashkova, D. Wyrzykowski, A. Woziwodzka, G. Gołuński, et al. Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys. Chem. Chem. Phys. 16:23164–23172, 2014.CrossRefGoogle Scholar
  38. 38.
    Prylutskyy, Yu. I., M. P. Evstigneev, V. V. Cherepanov, O. A. Kyzyma, L. A. Bulavin, N. A. Davidenko, et al. Structural organization of C60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. J. Nanopart. Res. 17:45, 2015.CrossRefGoogle Scholar
  39. 39.
    Prylutskyy, Yu. I., V. V. Cherepanov, M. P. Evstigneev, O. A. Kyzyma, V. I. Petrenko, V. I. Styopkin, et al. Structural self-organization of C60 and cisplatin in physiological solution. Phys. Chem. Chem. Phys. 17:26084–26092, 2015.CrossRefGoogle Scholar
  40. 40.
    Prylutskyy, Y. I., V. V. Cherepanov, V. V. Kostjukov, M. P. Evstigneev, O. A. Kyzyma, L. A. Bulavin, et al. Study of the complexation between Landomycin A and C60 fullerene in aqueous solution. RSC Adv. 6:81231–81236, 2016.CrossRefGoogle Scholar
  41. 41.
    Prylutskyy, Y., A. Bychko, V. Sokolova, S. Prylutska, M. Evstigneev, V. Rybalchenko, et al. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells. Mater. Sci. Eng. C 59:398–403, 2016.CrossRefGoogle Scholar
  42. 42.
    Ritter, U., Y. I. Prylutskyy, M. P. Evstigneev, N. A. Davidenko, V. V. Cherepanov, A. I. Senenko, et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fuller. Nanotubes Carbon Nanostruct. 23:530–534, 2015.CrossRefGoogle Scholar
  43. 43.
    Samanta, P. N., and K. K. Das. Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs: a theoretical study. J. Mol. Graph. Model. 72:187–200, 2017.CrossRefGoogle Scholar
  44. 44.
    Schuetze, C., U. Ritter, P. Scharff, A. Bychko, S. Prylutska, V. Rybalchenko, et al. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine–C60 compound with a model bimolecular lipid membrane. Mater. Sci. Eng. C 31:1148–1150, 2011.CrossRefGoogle Scholar
  45. 45.
    Shaaban, K. A., S. Srinivasan, R. Kumar, C. Damodaran, and J. Rohr. Landomycins P–W, cytotoxic angucyclines from Streptomyces cyanogenus S-136. J. Nat. Prod. 74:2–11, 2011.CrossRefGoogle Scholar
  46. 46.
    Shimizu, K., R. Kubota, N. Kobayashi, M. Tahara, N. Sugimoto, T. Nishimura, et al. Cytotoxic effects of hydroxylated fullerenes in three types of liver cells. Materials 6:2713–2722, 2013.CrossRefGoogle Scholar
  47. 47.
    Singh, R., and J. W. Lillard, Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86:215–223, 2009.CrossRefGoogle Scholar
  48. 48.
    Steichen, S. D., M. Caldorera-Moore, and N. A. Peppas. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 48:416–427, 2013.CrossRefGoogle Scholar
  49. 49.
    Tabata, Y., Y. Murakami, and Y. Ikada. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn. J. Cancer Res. 88:1108–1116, 1997.CrossRefGoogle Scholar
  50. 50.
    Tolkachov, M., V. Sokolova, V. Korolovych, Y. Prylutskyy, M. Epple, U. Ritter, et al. Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Mater. Wiss. Werkst. 47:216–221, 2016.CrossRefGoogle Scholar
  51. 51.
    Vereshchaka, I. V., N. V. Bulgakova, A. V. Maznychenko, O. O. Gonchar, Yu. I. Prylutskyy, U. Ritter, et al. C60 fullerenes diminish the muscle fatigue in rats comparable to N-acetylcysteine or β-alanine. Front. Physiol. 9:517, 2018.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenEssenGermany
  3. 3.Institute of Cell BiologyNational Academy of Sciences of UkraineL’vivUkraine
  4. 4.Department of PhysicsSevastopol State UniversitySevastopolCrimea
  5. 5.Institute of Chemistry and BiotechnologyTechnical University of IlmenauIlmenauGermany
  6. 6.College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations