Cellular and Molecular Bioengineering

, Volume 11, Issue 5, pp 407–418 | Cite as

Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes

  • Sahil Kumar Rastogi
  • Jacqueline Bliley
  • Daniel J. Shiwarski
  • Guruprasad Raghavan
  • Adam W. Feinberg
  • Tzahi Cohen-KarniEmail author



Cell–cell communication plays a pivotal role in biological systems’ coordination and function. Electrical properties have been linked to specification and differentiation of stem cells into targeted progeny, such as neurons and cardiomyocytes. Currently, there is a critical need in developing new ways to complement fluorescent indicators, such as Ca2+-sensitive dyes, for direct electrophysiological measurements of cells and tissue. Here, we report a unique transparent and biocompatible graphene-based electrical platform that enables electrical and optical investigation of human embryonic stem cell-derived cardiomyocytes’ (hESC-CMs) intracellular processes and intercellular communication.


Graphene, a honeycomb sp2 hybridized two-dimensional carbon lattice, was synthesized using low pressure chemical vapor deposition system, and was tested for biocompatibility. Au and graphene microelectrode arrays (MEAs) were fabricated using well-established microfabrication methods. Au and graphene MEAs were interfaced with hESC-CMs to perform both optical and electrical recordings.


Optical imaging and Raman spectroscopy confirmed the presence of monolayer graphene. Viability assay showed biocompatibility of graphene. Electrochemical characterization proved graphene’s functional activity. Nitric acid treatment further enhanced the electrochemical properties of graphene. Graphene electrodes’ transparency enabled both optical and electrical recordings from hESC-CMs. Graphene MEA detected changes in beating frequency and field potential duration upon β-adrenergic receptor agonist treatment.


The transparent graphene platform enables the investigation of both intracellular and intercellular communication processes and will create new avenues for bidirectional communication (sensing and stimulation) with electrically active tissues and will set the ground for investigations reported diseases such as Alzheimer, Parkinson’s disease and arrhythmias.


Transparent electrodes Calcium imaging High spatial and temporal resolution Bioelectronics hESC-CM Graphene 



T. Cohen-Karni would like to thank the National Science Foundation (CBET1552833) and the Office of Naval Research (N000141712368). The authors would also like to thank Carnegie Mellon University Nanofabrication Facility, and the Department of Materials Science and Engineering Materials Characterization Facility (MCF).

Conflict of interest

Sahil K. Rastogi, Jacqueline Bliley, Daniel J. Shiwarski, Guruprasad Raghavan, Adam W. Feinberg and Tzahi Cohen-Karni declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Supplementary material

Supplementary material 1 (MP4 13959 kb)

Supplementary material 2 (MP4 18151 kb)

12195_2018_525_MOESM3_ESM.docx (10.3 mb)
Supplementary material 3 (DOCX 10526 kb)


  1. 1.
    Bard, A. J., L. R. Faulkner, J. Leddy, and C. G. Zoski. Electrochemical Methods: Fundamentals and Applications, Vol. 2. New York: Wiley, 1980.Google Scholar
  2. 2.
    Blake, P., E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, and A. Geim. Making graphene visible. Appl. Phys. Lett. 91(6):063124, 2007.CrossRefGoogle Scholar
  3. 3.
    Buckingham, M., S. Meilhac, and S. Zaffran. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6(11):826–835, 2005.CrossRefGoogle Scholar
  4. 4.
    Burridge, P. W., E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, and N. M. Mordwinkin. Chemically defined generation of human cardiomyocytes. Nat. Methods 11(8):855–860, 2014.CrossRefGoogle Scholar
  5. 5.
    Caspi, O., I. Itzhaki, I. Kehat, A. Gepstein, G. Arbel, I. Huber, J. Satin, and L. Gepstein. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 18(1):161–172, 2009.CrossRefGoogle Scholar
  6. 6.
    Chen, G., D. R. Gulbranson, Z. Hou, J. M. Bolin, V. Ruotti, M. D. Probasco, K. Smuga-Otto, S. E. Howden, N. R. Diol, and N. E. Propson. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8(5):424–429, 2011.CrossRefGoogle Scholar
  7. 7.
    Clements, M., and N. Thomas. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol. Sci. 140(2):445–461, 2014.CrossRefGoogle Scholar
  8. 8.
    Cohen-Karni, T., Q. Qing, Q. Li, Y. Fang, and C. M. Lieber. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10(3):1098–1102, 2010.CrossRefGoogle Scholar
  9. 9.
    Deep-Brain Stimulation for Parkinson’s Disease Study. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 345(13):956–963, 2001.CrossRefGoogle Scholar
  10. 10.
    Deisseroth, K. Optogenetics. Nat. Methods 8(1):26–29, 2011.CrossRefGoogle Scholar
  11. 11.
    Duranteau, J., N. S. Chandel, A. Kulisz, Z. Shao, and P. T. Schumacker. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J. Biol. Chem. 273(19):11619–11624, 1998.CrossRefGoogle Scholar
  12. 12.
    Epstein, A. E., J. P. DiMarco, K. A. Ellenbogen, N. A. Estes, 3rd, R. A. Freedman, L. S. Gettes, A. M. Gillinov, G. Gregoratos, S. C. Hammill, D. L. Hayes, M. A. Hlatky, L. K. Newby, R. L. Page, M. H. Schoenfeld, M. J. Silka, L. W. Stevenson, M. O. Sweeney, S. C. Smith, Jr, A. K. Jacobs, C. D. Adams, J. L. Anderson, C. E. Buller, M. A. Creager, S. M. Ettinger, D. P. Faxon, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, H. M. Krumholz, F. G. Kushner, B. W. Lytle, R. A. Nishimura, J. P. Ornato, R. L. Page, B. Riegel, L. G. Tarkington, and C. W. Yancy. American College of Cardiology/American Heart Association Task Force on Practice, G.; American Association for Thoracic, S.; Society of Thoracic, S., ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 51(21):e1–e62, 2008.CrossRefGoogle Scholar
  13. 13.
    Fang, T., A. Konar, H. Xing, and D. Jena. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9):092109, 2007.CrossRefGoogle Scholar
  14. 14.
    Feinberg, A. W., C. M. Ripplinger, P. Van Der Meer, S. P. Sheehy, I. Domian, K. R. Chien, and K. K. Parker. Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Rep. 1(5):387–396, 2013.CrossRefGoogle Scholar
  15. 15.
    Geim, A. K. Graphene: status and prospects. Science 324(5934):1530–1534, 2009.CrossRefGoogle Scholar
  16. 16.
    Gross, G. W., W. Y. Wen, and J. W. Lin. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Methods 15(3):243–252, 1985.CrossRefGoogle Scholar
  17. 17.
    Hayakawa, T., T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa. Image-based evaluation of contraction–relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: correlation and complementarity with extracellular electrophysiology. J. Mol. Cell. Cardiol. 77:178–191, 2014.CrossRefGoogle Scholar
  18. 18.
    Herron, T. J., P. Lee, and J. Jalife. Optical imaging of voltage and calcium in cardiac cells and tissues. Circ. Res. 110(4):609–623, 2012.CrossRefGoogle Scholar
  19. 19.
    Huang, S., A. A. Heikal, and W. W. Webb. Two-photon fluorescence spectroscopy and microscopy of NAD (P) H and flavoprotein. Biophys. J. 82(5):2811–2825, 2002.CrossRefGoogle Scholar
  20. 20.
    Itzhaki, I., S. Rapoport, I. Huber, I. Mizrahi, L. Zwi-Dantsis, G. Arbel, J. Schiller, and L. Gepstein. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PloS ONE 6(4):e18037, 2011.CrossRefGoogle Scholar
  21. 21.
    Kasry, A., M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 4(7):3839–3844, 2010.CrossRefGoogle Scholar
  22. 22.
    Kehat, I., A. Gepstein, A. Spira, J. Itskovitz-Eldor, and L. Gepstein. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes. Circ. Res. 91(8):659–661, 2002.CrossRefGoogle Scholar
  23. 23.
    Kehat, I., D. Kenyagin-Karsenti, M. Snir, H. Segev, M. Amit, A. Gepstein, E. Livne, O. Binah, J. Itskovitz-Eldor, and L. Gepstein. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3):407, 2001.CrossRefGoogle Scholar
  24. 24.
    Kireev, D., S. Seyock, M. Ernst, V. Maybeck, B. Wolfrum, and A. Offenhäusser. Versatile flexible graphene multielectrode arrays. Biosensors 7(1):1, 2016.CrossRefGoogle Scholar
  25. 25.
    Kovács, M., J. Tóth, C. Hetényi, A. Málnási-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34):35557–35563, 2004.CrossRefGoogle Scholar
  26. 26.
    Kuzum, D., H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, and T. H. Lucas. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5:5259, 2014.CrossRefGoogle Scholar
  27. 27.
    Kwon, J., W. Seung, B. K. Sharma, S.-W. Kim, and J.-H. Ahn. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5(10):8970–8975, 2012.CrossRefGoogle Scholar
  28. 28.
    Lee, S., J.-S. Yeo, Y. Ji, C. Cho, D.-Y. Kim, S.-I. Na, B. H. Lee, and T. Lee. Flexible organic solar cells composed of P3HT: PCBM using chemically doped graphene electrodes. Nanotechnology 23(34):344013, 2012.CrossRefGoogle Scholar
  29. 29.
    Lian, X., J. Zhang, S. M. Azarin, K. Zhu, L. B. Hazeltine, X. Bao, C. Hsiao, T. J. Kamp, and S. P. Palecek. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8(1):162–175, 2013.CrossRefGoogle Scholar
  30. 30.
    Martin-Puig, S., Z. Wang, and K. R. Chien. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2(4):320–331, 2008.CrossRefGoogle Scholar
  31. 31.
    Mataev, E., S. K. Rastogi, A. Madhusudan, J. Bone, N. Lamprinakos, Y. Picard, and T. Cohen-Karni. Synthesis of group IV nanowires on graphene: the case of Ge nanocrawlers. Nano Lett. 16(8):5267–5272, 2016.CrossRefGoogle Scholar
  32. 32.
    Meyer, T., K.-H. Boven, E. Günther, and M. Fejtl. Micro-electrode arrays in cardiac safety pharmacology. Drug Saf. 27(11):763–772, 2004.CrossRefGoogle Scholar
  33. 33.
    Mummery, C., D. Ward, C. Van Den Brink, S. Bird, P. Doevendans, T. Opthof, D. La Riviere, A. Brutel, L. Tertoolen, and M. Van Der Heyden. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200(3):233–242, 2002.CrossRefGoogle Scholar
  34. 34.
    Nakahara, M. The Science of Color. Tokyo: Baifukan, 2002.Google Scholar
  35. 35.
    Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science 306(5696):666–669, 2004.CrossRefGoogle Scholar
  36. 36.
    Otsuji, T. G., I. Minami, Y. Kurose, K. Yamauchi, M. Tada, and N. Nakatsuji. Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res. 4(3):201–213, 2010.CrossRefGoogle Scholar
  37. 37.
    Park, D.-W., A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, and R. Pashaie. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5:6258, 2014.Google Scholar
  38. 38.
    Pascut, F. C., H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher. Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells. Biophys. J. 100(1):251–259, 2011.CrossRefGoogle Scholar
  39. 39.
    Qiang, Y., K. J. Seo, X. Zhao, P. Artoni, N. H. Golshan, S. Culaclii, P. M. Wang, W. Liu, K. S. Ziemer, and M. Fagiolini. Bilayer nanomesh structures for transparent recording and stimulating microelectrodes. Adv. Funct. Mater. 2017. Scholar
  40. 40.
    Rastogi, S. K., G. Raghavan, G. Yang, and T. Cohen-Karni. Effect of graphene on nonneuronal and neuronal cell viability and stress. Nano Lett. 17(5):3297–3301, 2017.CrossRefGoogle Scholar
  41. 41.
    Saito, R., M. Hofmann, G. Dresselhaus, A. Jorio, and M. Dresselhaus. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3):413–550, 2011.CrossRefGoogle Scholar
  42. 42.
    Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego: California Technical Publishing, 1997.Google Scholar
  43. 43.
    Spira, M. E., and A. Hai. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2):83–94, 2013.CrossRefGoogle Scholar
  44. 44.
    Stroh, A., H. C. Tsai, L. P. Wang, F. Zhang, J. Kressel, A. Aravanis, N. Santhanam, K. Deisseroth, A. Konnerth, and M. B. Schneider. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29(1):78–88, 2011.CrossRefGoogle Scholar
  45. 45.
    Suk, J. W., A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924, 2011.CrossRefGoogle Scholar
  46. 46.
    Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147, 1998.CrossRefGoogle Scholar
  47. 47.
    Tohyama, S., F. Hattori, M. Sano, T. Hishiki, Y. Nagahata, T. Matsuura, H. Hashimoto, T. Suzuki, H. Yamashita, and Y. Satoh. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12(1):127–137, 2013.CrossRefGoogle Scholar
  48. 48.
    Wang, G., L. Zhang, and J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2):797–828, 2012.CrossRefGoogle Scholar
  49. 49.
    Xia, J., F. Chen, J. Li, and N. Tao. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8):505, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations