Cellular and Molecular Bioengineering

, Volume 11, Issue 2, pp 143–155 | Cite as

Effect of Spatial Heterogeneity and Colocalization of eNOS and Capacitative Calcium Entry Channels on Shear Stress-Induced NO Production by Endothelial Cells: A Modeling Approach

  • Kenneth A. Barbee
  • Jaimit B. Parikh
  • Yien Liu
  • Donald G. Buerk
  • Dov Jaron
Article

Abstract

Colocalization of endothelial nitric oxide synthase (eNOS) and capacitative Ca2+ entry (CCE) channels in microdomains such as cavaeolae in endothelial cells (ECs) has been shown to significantly affect intracellular Ca2+ dynamics and NO production, but the effect has not been well quantified. We developed a two-dimensional continuum model of an EC integrating shear stress-mediated ATP production, intracellular Ca2+ mobilization, and eNOS activation to investigate the effects of spatial colocalization of plasma membrane eNOS and CCE channels on Ca2+ dynamics and NO production in response to flow-induced shear stress. Our model examines the hypothesis that subcellular colocalization of cellular components can be critical for optimal coupling of NO production to blood flow. Our simulations predict that heterogeneity of CCE can result in formation of microdomains with significantly higher Ca2+ compared to the average cytosolic Ca2+. Ca2+ buffers with lower or no mobility further enhanced Ca2+ gradients relative to mobile buffers. Colocalization of eNOS to CCE channels significantly increased NO production. Our results provide quantitative understanding for the role of spatial heterogeneity and the compartmentalization of signals in regulation of shear stress-induced NO production.

Keywords

Nitric oxide Caveolae Endothelial cells Endothelial nitric oxide synthase Cav1 clustering Mathematical model 

Notes

Acknowledgments

This work was supported by the National Heart, Lung and Blood Institute Grant U01HL116256.

Disclosures

Kenneth Barbee, Jaimit Parikh, Yien Liu, Donald Buerk, and Dov Jaron declare that they have no conflicts of interest.

Ethical standards

No human or animal studies were carried out by the authors for this article.

References

  1. 1.
    A. Kapela, S. Nagaraja, Jaimit Parikh, and N. M. T. Modeling Ca2+ Signaling in the microcirculation: intercellular communication and vasoreactivity. Crit. Rev. Biomed. Eng. 39:435–460, 2011.CrossRefGoogle Scholar
  2. 2.
    Andrews, A. M., D. Jaron, D. G. Buerk, and K. A. Barbee. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium Entry. Cell. Mol. Bioeng. 7:510–520, 2014.CrossRefGoogle Scholar
  3. 3.
    Andrews, A. M., D. Jaron, D. G. Buerk, P. L. Kirby, and K. A. Barbee. Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide 23:335–342, 2010.CrossRefGoogle Scholar
  4. 4.
    Balligand, J.-L., O. Feron, and C. Dessy. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol. Rev. 89:481–534, 2009.CrossRefGoogle Scholar
  5. 5.
    Béliveau, É., V. Lessard, and G. Guillemette. STIM1 positively regulates the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor in bovine aortic endothelial cells. PLoS ONE 9:e114718, 2014.CrossRefGoogle Scholar
  6. 6.
    Billaud, M., A. W. Lohman, S. R. Johnstone, L. A. Biwer, S. Mutchler, and B. E. Isakson. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol. Rev. 66:513–569, 2014.CrossRefGoogle Scholar
  7. 7.
    Bodin, P., D. Bailey, and G. Burnstock. Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br. J. Pharmacol. 103:1203–1205, 1991.CrossRefGoogle Scholar
  8. 8.
    Busse, R., and A. Mülsch. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 265:133–136, 1990.CrossRefGoogle Scholar
  9. 9.
    Cabral, P. D., N. J. Hong, and J. L. Garvin. ATP mediates flow-induced NO production in thick ascending limbs. Am. J. Physiol. Renal Physiol. 303:F194–F200, 2012.CrossRefGoogle Scholar
  10. 10.
    Chen, X., D. Jaron, K. A. Barbee, and D. G. Buerk. The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J. Appl. Physiol. 100:482–492, 2006.CrossRefGoogle Scholar
  11. 11.
    Comerford, A., M. J. Plank, and T. David. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J. Biomech. Eng. 130:011010, 2008.CrossRefGoogle Scholar
  12. 12.
    Dudzinski, D. M., J. Igarashi, D. Greif, and T. Michel. The regulation and pharmacology of endothelial nitric oxide synthase. Annu. Rev. Pharmacol. Toxicol. 46:235–276, 2006.CrossRefGoogle Scholar
  13. 13.
    Dupont, G., and A. Goldbeter. Properties of intracellular Ca2+ waves generated by a model based on Ca(2 +)-induced Ca2+ release. Biophys. J . 67:2191–2204, 1994.CrossRefGoogle Scholar
  14. 14.
    Francis, C. M., J. R. Waldrup, X. Qian, V. Solodushko, J. Meriwether, and M. S. Taylor. Functional tuning of intrinsic endothelial Ca2+ dynamics in swine coronary arteries. Circ. Res. 118:1078–1090, 2016.CrossRefGoogle Scholar
  15. 15.
    Fukumura, D., S. Kashiwagi, and R. K. Jain. The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6:521–534, 2006.CrossRefGoogle Scholar
  16. 16.
    Fulton, D., R. Babbitt, S. Zoellner, J. Fontana, L. Acevedo, T. J. McCabe, Y. Iwakiri, and W. C. Sessa. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J. Biol. Chem. 279:30349–30357, 2004.CrossRefGoogle Scholar
  17. 17.
    García-Cardeña, G., P. Oh, J. Liu, J. E. Schnitzer, and W. C. C. Sessa. Targeting of nitric oxide synthase to endothelial caveolae via palmitoylation. Proc. Natl. Acad. Sci. U.S.A. 10:6448–6453, 1996.CrossRefGoogle Scholar
  18. 18.
    Helmlinger, G., B. C. Berk, and R. M. Nerem. Pulsatile and steady flow-induced calcium oscillations in single cultured endothelial cells. J. Vasc. Res. 33:360–369, 1996.CrossRefGoogle Scholar
  19. 19.
    Hong, D. D. Jaron, D. G. Buerk, and K. a Barbee. Heterogeneous response of microvascular endothelial cells to shear stress. Am. J. Physiol. Heart Circ. Physiol. 290:H2498–H2508, 2006.CrossRefGoogle Scholar
  20. 20.
    Hong, D. D. Jaron, D. G. Buerk, and K. a Barbee. Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am. J. Physiol. Cell Physiol. 294:C856–C866, 2008.CrossRefGoogle Scholar
  21. 21.
    Hu, X., C. Xiang, L. Cao, Z. Xu, and K. Qin. A mathematical model for ATP-mediated calcium dynamics in vascular endothelial cells induced by fluid shear stress. Appl. Math. Mech. 29:1291–1298, 2008.CrossRefMATHGoogle Scholar
  22. 22.
    Ignarro, L. J., G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269, 1987.CrossRefGoogle Scholar
  23. 23.
    Jin, Z.-G. Where is endothelial nitric oxide synthase more critical: plasma membrane or Golgi? Arterioscler. Thromb. Vasc. Biol. 26:959–961, 2006.CrossRefGoogle Scholar
  24. 24.
    Kirby, P. L., D. G. Buerk, J. Parikh, K. A. Barbee, and D. Jaron. Mathematical model for shear stress dependent NO and adenine nucleotide production from endothelial cells. Nitric Oxide 52:1–15, 2016.CrossRefGoogle Scholar
  25. 25.
    Ledoux, J., M. S. Taylor, A. D. Bonev, R. M. Hannah, V. Solodushko, B. Shui, Y. Tallini, M. I. Kotlikoff, and M. T. Nelson. Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc. Natl. Acad. Sci. U.S.A. 105:9627–9632, 2008.CrossRefGoogle Scholar
  26. 26.
    Li, L.-F., C. Xiang, and K.-R. Qin. Modeling of TRPV-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP. Biomech. Model. Mechanobiol. 14:979–993, 2015.CrossRefGoogle Scholar
  27. 27.
    Lin, S., K. A. Fagan, K. X. Li, P. W. Shaul, D. M. F. Cooper, and D. M. Rodman. Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J. Biol. Chem. 275:17979–17985, 2000.CrossRefGoogle Scholar
  28. 28.
    Means, S., A. J. Smith, J. Shepherd, J. Shadid, J. Fowler, R. J. H. Wojcikiewicz, T. Mazel, G. D. Smith, and B. S. Wilson. Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys. J . 91:537–557, 2006.CrossRefGoogle Scholar
  29. 29.
    Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol. 260:H1698–H1707, 1991.Google Scholar
  30. 30.
    Mount, P. F., B. E. Kemp, and D. A. Power. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J. Mol. Cell. Cardiol. 42(2):271–279, 2007.CrossRefGoogle Scholar
  31. 31.
    Murthy, V. N., T. J. Sejnowski, and C. F. Stevens. Dynamics of dendritic calcium transients evoked by quantal release at excitatory hippocampal synapses. Proc. Natl. Acad. Sci. U.S.A. 97:901–906, 2000.CrossRefGoogle Scholar
  32. 32.
    Nakano, T., R. Tominaga, I. Nagano, H. Okabe, and H. Yasui. Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am. J. Physiol. Heart Circ. Physiol. 278:H1098–H1104, 2000.CrossRefGoogle Scholar
  33. 33.
    Ogawa, K., and K. Taniguchi. Transport pathways for macromolecules in the aortic endothelium. II. The distribution analysis of plasmalemmal vesicles reconstructed by serial sections. Anat. Rec. 237:358–364, 1993.CrossRefGoogle Scholar
  34. 34.
    Palmer, R. M. J., A. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526, 1987.CrossRefGoogle Scholar
  35. 35.
    Parikh, J., A. Kapela, and N. M. Tsoukias. Stochastic model of endothelial TRPV4 calcium sparklets: effect of bursting and cooperativity on EDH. Biophys. J . 108:1566–1576, 2015.CrossRefGoogle Scholar
  36. 36.
    Pires, P. W., and S. Earley. No static at all. Circ. Res. 118:1042–1044, 2016.CrossRefGoogle Scholar
  37. 37.
    Plank, M. J., D. J. N. Wall, and T. David. Atherosclerosis and calcium signalling in endothelial cells. Prog. Biophys. Mol. Biol. 91:287–313, 2006.CrossRefGoogle Scholar
  38. 38.
    Qian, X., M. Francis, V. Solodushko, S. Earley, and M. S. Taylor. Recruitment of dynamic endothelial Ca2+ signals by the TRPA1 channel activator AITC in rat cerebral arteries. Microcirculation 20:138–148, 2013.CrossRefGoogle Scholar
  39. 39.
    Qin, K. R., C. Xiang, Z. Xu, L. L. Cao, S. S. Ge, and Z. L. Jiang. Dynamic modeling for shear stress induced ATP release from vascular endothelial cells. Biomech. Model. Mechanobiol. 7:345–353, 2008.CrossRefGoogle Scholar
  40. 40.
    Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, and M. A. Gimbrone. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262:C384–C390, 1992.CrossRefGoogle Scholar
  41. 41.
    Shyy, J. Y. J., and S. Chien. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91(9):769–775, 2002.CrossRefGoogle Scholar
  42. 42.
    Simionescu, M., N. Simionescu, and G. E. Palade. Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60:128–152, 1974.CrossRefGoogle Scholar
  43. 43.
    Sonkusare, S. K., A. D. Bonev, J. Ledoux, W. Liedtke, M. I. Kotlikoff, T. J. Heppner, D. C. Hill-Eubanks, and M. T. Nelson. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336(6081):597–601, 2012.CrossRefGoogle Scholar
  44. 44.
    Sriram, K., J. G. Laughlin, P. Rangamani, and D. M. Tartakovsky. Shear-induced nitric oxide production by endothelial Cells. Biophys. J . 111:208–221, 2016.CrossRefGoogle Scholar
  45. 45.
    Straub, A. C., A. W. Lohman, M. Billaud, S. R. Johnstone, S. T. Dwyer, M. Y. Lee, P. S. Bortz, A. K. Best, L. Columbus, B. Gaston, and B. E. Isakson. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 491:473–477, 2012.CrossRefGoogle Scholar
  46. 46.
    Tran, C. H. T., M. S. Taylor, F. Plane, S. Nagaraja, N. M. Tsoukias, V. Solodushko, E. J. Vigmond, T. Furstenhaupt, M. Brigdan, and D. G. Welsh. Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. AJP Cell Physiol. 302:C1226–C1242, 2012.CrossRefGoogle Scholar
  47. 47.
    Tran, J., A. Magenau, M. Rodriguez, C. Rentero, T. Royo, C. Enrich, S. R. Thomas, T. Grewal, and K. Gaus. Activation of endothelial nitric oxide (eNOS) occurs through different membrane domains in endothelial cells. PLoS ONE 11:e0151556, 2016.CrossRefGoogle Scholar
  48. 48.
    Tsoukias, N. M. Calcium dynamics and signaling in vascular regulation: computational models. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:93–106, 2011.CrossRefGoogle Scholar
  49. 49.
    Tykocki, N. R., and M. T. Nelson. Location, location, location: juxtaposed calcium-signaling microdomains as a novel model of the vascular smooth muscle myogenic response. J. Gen. Physiol. 146:129–132, 2015.CrossRefGoogle Scholar
  50. 50.
    Uhlmann, S., U. Friedrichs, W. Eichler, S. Hoffmann, and P. Wiedemann. Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvasc. Res. 62:179–189, 2001.CrossRefGoogle Scholar
  51. 51.
    Wiesner, T. F., B. C. Berk, and R. M. Nerem. A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. Am. J. Physiol. 270:C1556–C1569, 1996.CrossRefGoogle Scholar
  52. 52.
    Yamamoto, K., K. Furuya, M. Nakamura, E. Kobatake, M. Sokabe, and J. Ando. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J. Cell Sci. 124:3477–3483, 2011.CrossRefGoogle Scholar
  53. 53.
    Yamamoto, K., R. Korenaga, A. Kamiya, Z. Qi, M. Sokabe, and J. Ando. P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 279:H285–H292, 2000.CrossRefGoogle Scholar
  54. 54.
    Yamamoto, K., T. Sokabe, N. Ohura, H. Nakatsuka, A. Kamiya, and J. Ando. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 285:H793–H803, 2003.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Kenneth A. Barbee
    • 1
  • Jaimit B. Parikh
    • 2
  • Yien Liu
    • 1
  • Donald G. Buerk
    • 1
  • Dov Jaron
    • 1
  1. 1.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations