Advertisement

Cellular and Molecular Bioengineering

, Volume 12, Issue 1, pp 33–40 | Cite as

Mechanical Response of an Epithelial Island Subject to Uniaxial Stretch on a Hybrid Silicone Substrate

  • Yashar Bashirzadeh
  • Sandeep Dumbali
  • Shizhi Qian
  • Venkat MaruthamuthuEmail author
Article

Abstract

Introduction

The mechanical response of large multi-cellular collectives to external stretch has remained largely unexplored, despite its relevance to normal function and to external challenges faced by some tissues. Here, we introduced a simple hybrid silicone substrate to enable external stretch while providing a physiologically relevant physical micro-environment for cells.

Methods

We micropatterned epithelial islands on the substrate using a stencil to allow for a circular island shape without restraining island edges. We then used traction force microscopy to determine the strain energy and the inter-cellular sheet tension within the island as a function of time after stretch.

Results

While the strain energy stored in the substrate for unstretched cell islands stayed constant over time, a uniaxial 10% stretch resulted in an abrupt increase, followed by sustained increase in the strain energy of the islands over tens of minutes, indicating slower dynamics than for single cells reported previously. The sheet tension at the island mid-line perpendicular to the stretch direction also more than doubled compared to unstretched islands. Interestingly, the sheet tension at the island mid-line parallel to the stretch direction also reached similar levels over tens of minutes indicating the tendency of the island to homogenize its internal stress.

Conclusions

We found that the sheet tension within large epithelial islands depends on the midline direction relative to that of the stretch initially, but not at longer times. We suggest that the hybrid silicone substrate provides an accessible substrate for studying the mechanobiology of large epithelial cell islands.

Keywords

Mechanobiology Strain Traction force Sheet tension Micropatterning 

Notes

Acknowledgments

We thank Benedikt Sabass and Ulrich Schwarz for the script to reconstruct traction stresses. V.M. acknowledges support from the Thomas F. and Kate Miller Jeffress Memorial Trust and the National Institutes of Health under Award number 1R15GM116082.

Funding

This study was funded by NIH Grant 1R15GM116082.

Conflict of interest

Yashar Bashirzadeh, Sandeep Dumbali, Shizhi Qian and Venkat Maruthamuthu declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12195_2018_560_MOESM1_ESM.docx (1.2 mb)
Figure S1. Immunostaining of Actin (left) and E-cadherin (right) of control (top) and stretched (bottom) MDCK islands. Actin levels at the cell–cell contacts did not significantly differ between the unstretched and stretched islands. E-cadherin levels at cell–cell contacts for stretched islands was marginally less than for unstretched islands. Scale bar is 50 μm. Supplementary material 1 (DOCX 1235 kb)

References

  1. 1.
    Anderson, D. E., and M. T. Hinds. Endothelial cell micropatterning: methods, effects, and applications. Ann. Biomed. Eng. 39:2329, 2011.CrossRefGoogle Scholar
  2. 2.
    Azioune, A., N. Carpi, Q. Tseng, M. Thery, and M. Piel. Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol. 97:133–146, 2010.CrossRefGoogle Scholar
  3. 3.
    Bashirzadeh, Y., S. Chatterji, D. Palmer, S. Dumbali, S. Qian, and V. Maruthamuthu. Stiffness measurement of soft silicone substrates for mechanobiology studies using a widefield fluorescence microscope. J Vis Exp 137:57797, 2018.Google Scholar
  4. 4.
    Bashirzadeh, Y., S. Qian, and V. Maruthamuthu. Non-intrusive measurement of wall shear stress in flow channels. Sens. Actuators A 271:118–123, 2018.CrossRefGoogle Scholar
  5. 5.
    Butler, J. P., I. M. Tolic-Nørrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. 282:C595–C605, 2002.CrossRefGoogle Scholar
  6. 6.
    Carpi, N., and M. Piel. Stretching micropatterned cells on a PDMS membrane. J. Vis. Exp. 83:51193, 2014.Google Scholar
  7. 7.
    Casares, L., R. Vincent, D. Zalvidea, N. Campillo, D. Navajas, M. Arroyo, and X. Trepat. Hydraulic fracture during epithelial stretching. Nat. Mater. 14:343, 2015.CrossRefGoogle Scholar
  8. 8.
    Cesa, C. M., N. Kirchgessner, D. Mayer, U. S. Schwarz, B. Hoffmann, and R. Merkel. Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns. Rev. Sci. Instrum. 78:034301, 2007.CrossRefGoogle Scholar
  9. 9.
    Dumbali, S. P., L. Mei, S. Qian, and V. Maruthamuthu. Endogenous sheet-averaged tension within a large epithelial cell colony. J. Biomech. Eng. 139:101008, 2017.CrossRefGoogle Scholar
  10. 10.
    Feinberg, A. W., W. R. Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson, and A. B. Brennan. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J. Biomed. Mater. Res. Part A 86:522–534, 2008.CrossRefGoogle Scholar
  11. 11.
    Ferreira, T., and W. Rasband. ImageJ user guide. ImageJ/Fiji 1. 2012.Google Scholar
  12. 12.
    Gavara, N., P. Roca-Cusachs, R. Sunyer, R. Farré, and D. Navajas. Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys. J. 95:464–471, 2008.CrossRefGoogle Scholar
  13. 13.
    Harris, A. R., L. Peter, J. Bellis, B. Baum, A. J. Kabla, and G. T. Charras. Characterizing the mechanics of cultured cell monolayers. Proc. Natl. Acad. Sci. USA 109:16449–16454, 2012.CrossRefGoogle Scholar
  14. 14.
    Hoffman, B. D., C. Grashoff, and M. A. Schwartz. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323, 2011.CrossRefGoogle Scholar
  15. 15.
    Ingber, D. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564–577, 2003.CrossRefGoogle Scholar
  16. 16.
    Janmey, P. A., and R. T. Miller. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124:9–18, 2011.CrossRefGoogle Scholar
  17. 17.
    Jungbauer, S., H. Gao, J. P. Spatz, and R. Kemkemer. Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys. J. 95:3470–3478, 2008.CrossRefGoogle Scholar
  18. 18.
    Krishnan, R., C. Y. Park, Y.-C. Lin, J. Mead, R. T. Jaspers, X. Trepat, G. Lenormand, D. Tambe, A. V. Smolensky, and A. H. Knoll. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4:e5486, 2009.CrossRefGoogle Scholar
  19. 19.
    Lee, E., M. L. Ewald, M. Sedarous, T. Kim, B. W. Weyers, R. H. Truong, and S. Yamada. Deletion of the cytoplasmic domain of N-cadherin reduces, but does not eliminate, traction force-transmission. Biochem. Biophys. Res. Commun. 478:1640–1646, 2016.CrossRefGoogle Scholar
  20. 20.
    Mann, J. M., R. H. Lam, S. Weng, Y. Sun, and J. Fu. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740, 2012.CrossRefGoogle Scholar
  21. 21.
    Plotnikov, S. V., B. Sabass, U. S. Schwarz, and C. M. Waterman. High-resolution traction force microscopy. Methods Cell Biol. 123:367–394, 2014.CrossRefGoogle Scholar
  22. 22.
    Quinlan, A. M. T., L. N. Sierad, A. K. Capulli, L. E. Firstenberg, and K. L. Billiar. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6:e23272, 2011.CrossRefGoogle Scholar
  23. 23.
    Rasband, W. S. Imagej, us national institutes of health, Bethesda, MA, USA. 2011. http://imagej.nih.gov/ij/.
  24. 24.
    Sabass, B., M. L. Gardel, C. M. Waterman, and U. S. Schwarz. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94:207–220, 2008.CrossRefGoogle Scholar
  25. 25.
    Schwarz, U. S., N. Q. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. Safran. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J. 83:1380–1394, 2002.CrossRefGoogle Scholar
  26. 26.
    Shao, Y., X. Tan, R. Novitski, M. Muqaddam, P. List, L. Williamson, J. Fu, and A. P. Liu. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions. Rev. Sci. Instrum. 84:114304, 2013.CrossRefGoogle Scholar
  27. 27.
    Style, R. W., R. Boltyanskiy, G. K. German, C. Hyland, C. W. MacMinn, A. F. Mertz, L. A. Wilen, Y. Xu, and E. R. Dufresne. Traction force microscopy in physics and biology. Soft Matter 10:4047–4055, 2014.CrossRefGoogle Scholar
  28. 28.
    Thielicke, W., and E. Stamhuis. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2:e30, 2014.CrossRefGoogle Scholar
  29. 29.
    Tsukamoto, A., K. R. Ryan, Y. Mitsuoka, K. S. Furukawa, and T. Ushida. Cellular traction forces increase during consecutive mechanical stretching following traction force attenuation. J. Biomech. Sci. Eng. 12:17-00118, 2017.CrossRefGoogle Scholar
  30. 30.
    Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.CrossRefGoogle Scholar
  31. 31.
    Waters, C. M., K. M. Ridge, G. Sunio, K. Venetsanou, and J. I. Sznajder. Mechanical stretching of alveolar epithelial cells increases Na + -K + -ATPase activity. J. Appl. Physiol. 87:715–721, 1999.CrossRefGoogle Scholar
  32. 32.
    Wirtz, H. R., and L. G. Dobbs. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1270, 1990.CrossRefGoogle Scholar
  33. 33.
    Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.CrossRefGoogle Scholar
  34. 34.
    Yano, S., M. Komine, M. Fujimoto, H. Okochi, and K. Tamaki. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J. Investig. Dermatol. 122:783–790, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Yashar Bashirzadeh
    • 1
  • Sandeep Dumbali
    • 1
  • Shizhi Qian
    • 1
  • Venkat Maruthamuthu
    • 1
    Email author
  1. 1.Mechanical & Aerospace EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations