Cellular and Molecular Bioengineering

, Volume 12, Issue 1, pp 107–120 | Cite as

ROS and NO Dynamics in Endothelial Cells Exposed to Exercise-Induced Wall Shear Stress

  • Yan-Xia Wang
  • Hai-Bin Liu
  • Peng-Song Li
  • Wen-Xue Yuan
  • Bo Liu
  • Shu-Tian Liu
  • Kai-Rong QinEmail author



Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels are associated with vascular homeostasis and diseases. Exercise can modulate ROS and NO production through increasing frequency and magnitude of wall shear stress (WSS). However, the details of ROS and NO production in endothelial cells and their interplay under WSS induced by exercise at different intensities remain unclear.


In this study, we developed an in vitro multicomponent nonrectangular flow chamber system to simulate pulsatile WSS waveforms induced by moderate and high intensity exercise. Furthermore, the dynamic responses of ROS and NO in endothelial cells and the relationship between ROS and NO were investigated under the WSS induced by different intensity exercise.


After exposing to WSS induced by moderate intensity exercise, endothelial cells produced more NO than those under high intensity exercise-induced WSS. In this process, ROS was found to play a dual role in the generation of intracellular NO. Under WSS induced by moderate intensity exercise, modest elevated ROS promoted NO production, whereas excessive ROS in endothelial cells exposed to WSS induced by high intensity exercise attenuated NO bioavailability. Interestingly, antioxidant N-acetylcysteine (NAC) could increase NO production under WSS induced by high intensity exercise.


Our results provide some cues for selecting appropriate exercise intensities and elevating benefits of exercise on endothelial function. Additionally, owing to the consistency of our results and some in vivo phenomena, this flow chamber system may serve as an in vitro exercise model of arterial vessel for future studies.


Exercise Wall shear stress (WSS) Reactive oxygen species (ROS) Nitric oxide (NO) Endothelial cells 



The research described in this paper was supported in part by the National Natural Science Foundation of China (Grant Nos. 31370948, 11672065) and the Fundamental Research Funds for the Central Universities in China (Grant No. DUT18JC15).We would like to thank Prof. Wenyu Liu for kindly revising the manuscript.

Conflict of Interest

Yan-Xia Wang, Hai-Bin Liu, Peng-Song Li, Wen-Xue Yuan, Bo Liu, Shu-Tian Liu, Kai-Rong Qin declare no conflicts of interest.

Ethical Approval

All human subjects research was carried out in accordance with the Helsinki Declaration of 1975, as revised in 2000 (5) and approved by the Ethics Committee of Dalian University of Technology. No animal studies were carried out by the authors for this article.


  1. 1.
    Aruoma, O. I. Characterization of drugs as antioxidant prophylactics. Free Radic. Biol. Med. 20(5):675–705, 1996.Google Scholar
  2. 2.
    Battault, S., F. Singh, S. Gayrard, J. Zoll, C. Reboul, and G. Meyer. Endothelial function does not improve with high-intensity continuous exercise training in SHR: implications of eNOS uncoupling. Hypertens. Res. 39(2):70, 2016.Google Scholar
  3. 3.
    Beck, D. T., J. S. Martin, D. P. Casey, and R. W. Braith. Exercise training improves endothelial function in resistance arteries of young prehypertensives. J. Hum. Hypertens. 28(5):303, 2014.Google Scholar
  4. 4.
    Bharath, L. P., R. Mueller, Y. Li, T. Ruan, D. Kunz, R. Goodrich, T. Mills, L. Deeter, A. Sargsyan, P. V. A. Babu, T. E. Graham, and J. D. Symons. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can. J. Physiol. Pharmacol. 92(7):605–612, 2014.Google Scholar
  5. 5.
    Birk, G. K., E. A. Dawson, C. Atkinson, A. Haynes, N. T. Cable, D. H. Thijssen, and D. J. Green. Brachial artery adaptation to lower limb exercise training: role of shear stress. J. Appl. Physiol. 112(10):1653–1658, 2012.Google Scholar
  6. 6.
    Blackman, B. R., G. Garcıa-Cardena, and M. A. Gimbrone. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124(4):397–407, 2002.Google Scholar
  7. 7.
    Chao, Y., P. Ye, L. Zhu, X. Kong, X. Qu, J. Zhang, J. Luo, H. Yang, and S. Chen. Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway. J. Cell. Physiol. 233(2):1384–1395, 2018.Google Scholar
  8. 8.
    Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol Heart Circ. Physiol. 292(3):H1209–H1224, 2007.Google Scholar
  9. 9.
    Chin, L. K., J. Q. Yu, Y. Fu, T. Yu, A. Q. Liu, and K. Q. Luo. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Lab Chip. 11(11):1856–1863, 2011.Google Scholar
  10. 10.
    Foncea, R., C. Carvajal, C. Almarza, and F. Leighton. Endothelial cell oxidative stress and signal transduction. Biol. Res. 33(2):89, 2000.Google Scholar
  11. 11.
    Förstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 459(6):923–939, 2010.Google Scholar
  12. 12.
    Goto, C., Y. Higashi, M. Kimura, K. Noma, K. Hara, K. Nakagawa, M. Kawamura, K. Chayama, M. Yoshizumi, and I. Nara. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 108(5):530–535, 2003.Google Scholar
  13. 13.
    Gray, K. M., and K. M. Stroka. Vascular endothelial cell mechanosensing: new insights gained from biomimetic microfluidic models. Semin. Cell Dev. Biol. 71:106–117, 2017.Google Scholar
  14. 14.
    Green, D. J., T. Eijsvogels, Y. M. Bouts, A. J. Maiorana, L. H. Naylor, R. R. Scholten, M. E. A. Spaanderman, C. J. A. Pugh, V. S. Sprung, T. Schreuder, H. Jones, T. Cable, M. T. E. Hopman, and D. H. J. Thijssen. Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors. J. Appl. Physiol. 117(4):345–352, 2014.Google Scholar
  15. 15.
    Hambrecht, R., V. Adams, S. Erbs, A. Linke, N. Kränkel, Y. Shu, Y. Baither, S. Gielen, H. Thiele, J. F. Gummert, F. W. Mohr, and G. Schuler. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 107(25):3152–3158, 2003.Google Scholar
  16. 16.
    Han, Y., L. Wang, Q. P. Yao, P. Zhang, B. Liu, G. L. Wang, B. R. Shen, B. C. Chen, Y. X. Wang, Z. L. Jiang, and Y. X. Qi. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress. Biochim. Biophys. Acta 1853(5):1165–1173, 2015.Google Scholar
  17. 17.
    Higashi, Y., and M. Yoshizumi. New methods to evaluate endothelial function: method for assessing endothelial function in humans using a strain-gauge plethysmography: nitric oxide-dependent and-independent vasodilation. J. Pharmacol. Sci. 93(4):399–404, 2003.Google Scholar
  18. 18.
    Hsiai, T. K., J. Hwang, M. L. Barr, A. Correa, R. Hamilton, M. Alavi, M. Rouhanizadeh, and S. L. Hazen. Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-B-100 nitration. Free Radic Biol. Med. 42(4):519–529, 2007.Google Scholar
  19. 19.
    Hsieh, H. J., C. C. Cheng, S. T. Wu, J. J. Chiu, B. S. Wung, and D. L. Wang. Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-fos expression. J. Cell. Physiol. 175(2):156–162, 1998.Google Scholar
  20. 20.
    Hsieh, H. J., C. A. Liu, B. Huang, A. H. Tseng, and D. L. Wang. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 21(1):3, 2014.Google Scholar
  21. 21.
    Johnson, B. D., J. Padilla, and J. P. Wallace. The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur. J. Appl. Physiol. 112(1):33–42, 2012.Google Scholar
  22. 22.
    Kang, H., Y. Fan, and X. Deng. Vascular smooth muscle cell glycocalyx modulates shear-induced proliferation, migration, and NO production responses. Am. J. Physiol. Heart Circ. Physiol. 300(1):H76–H83, 2010.Google Scholar
  23. 23.
    Kim, B., H. Lee, K. Kawata, and J. Y. Park. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium. PLoS ONE 9(11):e111409, 2014.Google Scholar
  24. 24.
    Laughlin, M. H., and R. M. McAllister. Exercise training-induced coronary vascular adaptation. J. Appl. Physiol. 73(6):2209–2225, 1992.Google Scholar
  25. 25.
    Liu, H. B., W. X. Yuan, K. R. Qin, and J. Hou. Acute effect of cycling intervention on carotid arterial hemodynamics: basketball athletes versus sedentary controls. Biomed. Eng. Online. 14(1):S17, 2015.Google Scholar
  26. 26.
    Lum, H., and K. A. Roebuck. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol Cell Physiol. 280(4):C719–C741, 2001.Google Scholar
  27. 27.
    Pan, S. Molecular mechanisms responsible for the atheroprotective effects of laminar shear stress. Antioxid. Redox Signal. 11(7):1669–1682, 2009.Google Scholar
  28. 28.
    Schirmer, S. H., A. Degen, M. Baumhäkel, F. Custodis, L. Schuh, M. Kohlhaas, E. Friedrich, F. Bahlmann, R. Kappl, C. Maack, and M. Böhm. Heart-rate reduction by If-channel inhibition with ivabradine restores collateral artery growth in hypercholesterolemic atherosclerosis. Eur. Heart J. 33(10):1223–1231, 2011.Google Scholar
  29. 29.
    Shafique, E., A. Torina, Y. Liu, J. Feng, L. Benjamin, E. Harrington, F. Sellke, and R. Abid. Oxidant-induced endothelial dysfunction is a failure of the mitochondria to process cytosolic ROS. Eur. J. Pharmacol. 480(1–3):43–50, 2003.Google Scholar
  30. 30.
    Silvestro, A., F. Scopacasa, G. Oliva, C. T. De, L. Iuliano, and G. Brevetti. Vitamin C prevents endothelial dysfunction induced by acute exercise in patients with intermittent claudication. Atherosclerosis. 165(2):277–283, 2002.Google Scholar
  31. 31.
    Sun, M. W., M. F. Zhong, J. Gu, F. L. Qian, J. Z. Gu, and H. Chen. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase. Hypertens. Res. 31(4):805, 2008.Google Scholar
  32. 32.
    Takabe, W., N. Jen, L. Ai, R. Hamilton, S. Wang, K. Holmes, F. Dharbandi, B. Khalsa, S. Bressler, and M. L. Barr. Oscillatory shear stress induces mitochondrial superoxide production: implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling. Antioxid. Redox Signal. 15(5):1379, 2011.Google Scholar
  33. 33.
    Tanaka, L. Y., L. R. G. Bechara, A. M. dos Santos, C. P. Jordão, L. G. O. de Sousa, T. Bartholomeu, L. I. Ventura, F. R. M. Laurindo, and P. R. Ramires. Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species. Nitric Oxide. 45:7–14, 2015.Google Scholar
  34. 34.
    Thomas, S., S. Kotamraju, J. Zielonka, D. R. Harder, and B. Kalyanaraman. Hydrogen peroxide induces nitric oxide and proteosome activity in endothelial cells: a bell-shaped signaling response. Free Radic. Biol. Med. 42(7):1049–1061, 2007.Google Scholar
  35. 35.
    Wang, Y. X., Y. Wang, S. Q. Li, U. R. A. Aziz, S. T. Liu, and K. R. Qin. The analysis of wall shear stress modulated by acute exercise in the human common carotid artery with an elastic tube model. Comput. Model. Eng. 116(2):127–147, 2018.Google Scholar
  36. 36.
    Wang, Y. X., C. Xiang, B. Liu, Y. Zhu, Y. Luan, S. T. Liu, and K. R. Qin. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Biomed. Eng. Online 15(2):154, 2016.Google Scholar
  37. 37.
    Yamamoto, K., and J. Ando. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J. Cell Sci. 126(5):1227–1234, 2013.Google Scholar
  38. 38.
    Zhang, J., and M. H. Friedman. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude. Am. J. Physiol. Heart Circ. Physiol. 302(4):H983, 2012.Google Scholar
  39. 39.
    Zhang, J., and M. H. Friedman. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency. Am. J. Physiol. Heart Circ. Physiol. 305(6):H894–H902, 2013.Google Scholar
  40. 40.
    Zhou, J., Y. S. Li, and S. Chien. Shear stress-initiated signaling and its regulation of endothelial function significance. Arterioscler. Thromb. Vasc. Biol. 34(10):2191–2198, 2014.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina
  2. 2.School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalianChina
  3. 3.Department of Physical EducationDalian University of TechnologyDalianChina
  4. 4.School of Biomedical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations