Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration


The endocrine differentiation of pancreatic ductal epithelial cells is dependent upon their transition from a two-dimensional monolayer to three-dimensional islet-like clusters. Although clustering of these cells is commonly observed in vitro, it is not yet known whether clustering results from long-range signaling (e.g., chemotaxis) or short-range interactions (e.g., differential adhesion). To determine the mechanism behind clustering, we used experimental and computational modeling to determine the individual contributions of long-range and short-range interactions. Experimentally, the migration of PANC-1 cells on tissue culture treated plastic was tracked by time-lapse microscopy with or without a central cluster of cells that could act as a concentrated source of some long-range signal. Cell migration data was analyzed in terms of distance, number of steps, and migration rate in each direction, as well as migration rate as a function of distance from the cluster. Results did not indicate directed migration toward a central cluster (p > 0.05). Computationally, an agent-based model was used to demonstrate the plausibility of clustering by short-range interactions only. In the presence of random cell migration, this model showed that a high, but not maximal, cell–cell adhesion probability and minimal cell–substrate adhesion probability supported the greatest islet-like cluster formation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Bauwens, C. L., et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310, 2008.

  2. 2.

    Beattie, G. M., et al. A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes 51:3435–3439, 2002.

  3. 3.

    Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31:1–21, 2009.

  4. 4.

    Bonner-Weir, S., et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97:7999–8004, 2000.

  5. 5.

    Boretti, M. I., and K. J. Gooch. Induced cell clustering enhances islet beta cell formation from human cultures enriched for pancreatic ductal epithelial cells. Tissue Eng. 12:939–948, 2006.

  6. 6.

    Boretti, M. I., and K. J. Gooch. Effect of extracellular matrix and 3D morphogenesis on islet hormone gene expression by Ngn3-infected mouse pancreatic ductal epithelial cells. Tissue Eng. A 14:1927–1937, 2008.

  7. 7.

    Brereton, H. C., et al. Homotypic cell contact enhances insulin but not glucagon secretion. Biochem. Biophys. Res. Commun. 344:995–1000, 2006.

  8. 8.

    Choi, Y. Y., B. G. Chung, D. H. Lee, A. Khademhosseini, J.-H. Kim, and S.-H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterial 31:4296–4303, 2010.

  9. 9.

    Curtis, A. S., and J. V. Forrester. The competitive effects of serum proteins on cell adhesion. J. Cell Sci. 71:17–35, 1984.

  10. 10.

    Davis, G. E., and C. W. Camarillo. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp. Cell Res. 216:113–123, 1995.

  11. 11.

    DiMilla, P. A., J. A. Stone, J. A. Quinn, S. M. Albelda, and D. A. Lauffenburger. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122:729–737, 1993.

  12. 12.

    Ferrell, N., et al. Vacuum-assisted cell seeding in a microwell cell culture system. Anal. Chem. 82:2380–2386, 2010.

  13. 13.

    Gan, M. J. A. Albanese-O’Neill, and M.J. Haller. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr. Probl. Pediatr. Adolesc. Health Care 42:269–291, 2012.

  14. 14.

    Gershengorn, M. C., A. A. Hardikar, C. Wei, E. Geras-Raaka, B. Marcus-Samuels, and B. M. Raaka. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306:2261–2264, 2004.

  15. 15.

    Green, J. E. F., S. L. Waters, K. M. Shakesheff, and H. M. Byrne. A mathematical model of liver cell aggregation in vitro. Bull. Math. Biol. 71:906–930, 2009.

  16. 16.

    Hansen, C. H., R. G. Endres, and N. S. Wingreen. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput. Biol. 4:e1, 2008.

  17. 17.

    Hardikar, A. A., B. Marcus-Samuels, E. Geras-Raaka, B. M. Raaka, and M. C. Gershengorn. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc. Natl. Acad. Sci. USA 100:7117–7122, 2003.

  18. 18.

    Hatziavramidis, D. T., T. M. Karatzas, and G. P. Chrousos. Pancreatic islet cell transplantation: an update. Ann. Biomed. Eng. 41:469–476, 2013.

  19. 19.

    Hummel, K., K. K. McFann, J. Realsen, L. H. Messer, G. J. Klingensmith, and H. P. Chase. The increasing onset of type 1 diabetes in children. J. Pediatr. 161:652–657, 2012.

  20. 20.

    Hwang, Y.-S., B. G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, and A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106:16978–16983, 2009.

  21. 21.

    James, S. A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238, 2000.

  22. 22.

    Kay, R. R., P. Langridge, D. Traynor, and O. Hoeller. Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9:455–463, 2008.

  23. 23.

    LeCluyse, E. L., P. L. Bullock, and A. Parkinson. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv. Drug Deliv. Rev. 22:133–186, 1996.

  24. 24.

    Luther, M. J., et al. MIN6 beta-cell–beta-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem. Biophys. Res. Commun. 343:99–104, 2006.

  25. 25.

    Ma, X., et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. Biophys. Soc. 104:1–9, 2013.

  26. 26.

    Maher, J., J. V. Martell, B. A. Brantley, E. B. Cox, J. E. Niedel, and W. F. Rosse. The response of human neutrophils to a chemotactic tripeptide (N-formyl-methionyl-leucyl-phenylalanine) studied by microcinematography. Blood 64:221–228, 1984.

  27. 27.

    Mishra, P. K., S. R. Singh, I. G. Joshua, and S. C. Tyagi. Stem cells as therapeutic target for diabetes. Front Biosci. 15:461–477, 2011.

  28. 28.

    Park, J., et al. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7:1018–1028, 2007.

  29. 29.

    Pictet, R. L., W. R. Clark, R. H. Williams, and W. J. Rutter. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 29:436–467, 1972.

  30. 30.

    Ramiya, V. K., M. Maraist, K. E. Arfors, D. A. Schatz, A. B. Peck, and J. G. Cornelius. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6:278–282, 2000.

  31. 31.

    Rosenberg, L. Induction of islet cell neogenesis in the adult pancreas: the partial duct obstruction model. Microsc. Res. Tech. 43:337–346, 1998.

  32. 32.

    Saltzman, W. M. Tissue engineering: engineering principles for the design of replacement organs and tissues. New York: Oxford University Press, p. 544, 2004.

  33. 33.

    Shapiro, A. M. J., et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.

  34. 34.

    Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science 141:401–408, 1963.

  35. 35.

    Van Haastert, P. J. M., and M. Postma. Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J. 93:1787–1796, 2007.

  36. 36.

    Vernon, R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, and E. H. Sage. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547, 1992.

  37. 37.

    Wei, C., E. Geras-Raaka, B. Marcus-Samuels, Y. Oron, and M. C. Gershengorn. Trypsin and thrombin accelerate aggregation of human endocrine pancreas precursor cells. J. Cell. Physiol. 206:322–328, 2006.

  38. 38.

    Widman, M. T., D. Emerson, C. C. Chiu, and R. M. Worden. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol. Bioeng. 55:191–205, 1997.

  39. 39.

    Wilensky, U. NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University, 1999.

  40. 40.

    Winer, J. P., S. Oake, and P. A. Janmey. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4:e6382, 2009.

Download references


This work was supported by National Science Foundation Grants NSF-CMMI (0928739 and 1334757).

Conflict of interest

Mr. Holfinger and Drs. Reinhardt, Reen, Schultz, Passino, Ackerman, Kniss, Sander, Gallego-Perez, and Gooch have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Correspondence to Keith J. Gooch.

Additional information

Steven J. Holfinger and James W. Reinhardt are co-first authors.

Associate Editor Michael R. King oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 798 kb)

Supplementary material 4 (MP4 847 kb)

Supplementary material 5 (AVI 5452 kb)

Supplementary material 1 (MP4 798 kb)

Supplementary material 2 (AVI 6622 kb)

Supplementary material 3 (AVI 6720 kb)

Supplementary material 4 (MP4 847 kb)

Supplementary material 5 (AVI 5452 kb)

Supplementary material 6 (DOCX 3543 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holfinger, S.J., Reinhardt, J.W., Reen, R. et al. Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration. Cel. Mol. Bioeng. 8, 496–506 (2015) doi:10.1007/s12195-015-0396-5

Download citation


  • Diabetes
  • Islet cells
  • Differential adhesion
  • Agent-based modeling
  • Time-lapse microscopy