Cellular and Molecular Bioengineering

, Volume 7, Issue 2, pp 205–217 | Cite as

Effects of Migrating Cell-Induced Matrix Reorganization on 3D Cancer Cell Migration

  • Wei Sun
  • Nicholas Agung KurniawanEmail author
  • Alan Prem Kumar
  • Raj Rajagopalan
  • Chwee Teck Lim


The migration of cells is fundamental to a number of physiological/pathological processes, ranging from embryonic development, tissue regeneration to cancer metastasis. Current research on cell migration is largely based on simplified in vitro models that assume a homogeneous microenvironment and overlook the modification of extracellular matrix (ECM) by the cells. To address this shortcoming, we developed a nested three-dimensional (3D) collagen hydrogel model mimicking the connective tissue confronted by highly malignant breast cancer cells, MDA-MB-231. Strikingly, our findings revealed two distinct cell migration patterns: a rapid and directionally persistent collective migration of the leader cells and a more randomized migration in the regions that have previously been significantly modified by cells. The cell-induced modifications, which typically include clustering and alignment of fibers, effectively segmented the matrix into smaller sub-regions. Our results suggest that in an elastic 3D matrix, the presence of adjacent cells that have modified the matrix may in fact become physical hurdle to a migrating cell. Furthermore, our study emphasizes the need for a micromechanical understanding in the context of cancer invasion that allows for cell-induced modification of ECM and a heterogeneous cell migration.


Cancer invasion 3D extracellular matrix Collective cell migration Matrix remodeling Cell contraction 



Supports provided by the Global Enterprise for Micro-Mechanics and Molecular Medicine (GEM4) and the NUS Graduate School for Integrative Sciences and Engineering are gratefully acknowledged.

Conflict of interest

W. Sun, N. A. Kurniawan, A. P. Kumar, R. Rajagopalan, and C. T. Lim declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Supplementary material

Supplementary material 1 (WMV 1778 kb)

12195_2014_324_MOESM2_ESM.avi (3 mb)
Supplementary material 2 (AVI 3096 kb)

Supplementary material 3 (MPG 4846 kb)

Supplementary material 4 (MPG 4652 kb)


  1. 1.
    Bloom, R. J., J. P. George, A. Celedon, S. X. Sun, and D. Wirtz. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95:4077–4088, 2008.CrossRefGoogle Scholar
  2. 2.
    Borau, C., R. D. Kamm, and J. M. Garcia-Aznar. Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8:066008, 2011.CrossRefGoogle Scholar
  3. 3.
    Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234, 2000.CrossRefGoogle Scholar
  4. 4.
    Broedersz, C. P., K. E. Kasza, L. M. Jawerth, S. Munster, D. A. Weitz, and F. C. MacKintosh. Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter 6:4120–4127, 2010.CrossRefGoogle Scholar
  5. 5.
    Broedersz, C. P., M. Sheinman, and F. C. MacKintosh. Filament-length-controlled elasticity in 3D fiber networks. Phys. Rev. Lett. 108:078102, 2012.CrossRefGoogle Scholar
  6. 6.
    Castello-Cros, R., D. R. Khan, J. Simons, M. Valianou, and E. Cukierman. Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins. BMC Cancer 9:94, 2009.CrossRefGoogle Scholar
  7. 7.
    Condeelis, J., and J. E. Segall. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3:921–930, 2003.CrossRefGoogle Scholar
  8. 8.
    Decaestecker, C., O. Debeir, P. Van Ham, and R. Kiss. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med. Res. Rev. 27:149–176, 2007.CrossRefGoogle Scholar
  9. 9.
    Dickinson, R. B., S. Guido, and R. T. Tranquillo. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356, 1994.CrossRefGoogle Scholar
  10. 10.
    Entschladen, F., T. L. Drell, K. Lang, K. Masur, D. Palm, P. Bastian, B. Niggemann, and K. S. Zaenker. Analysis methods of human cell migration. Exp. Cell Res. 307:418–426, 2005.CrossRefGoogle Scholar
  11. 11.
    Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–532, 2005.CrossRefGoogle Scholar
  12. 12.
    Friedl, P. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol. 122:183–190, 2004.CrossRefGoogle Scholar
  13. 13.
    Friedl, P., and K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68:7247–7249, 2008.CrossRefGoogle Scholar
  14. 14.
    Fukata, Y., M. Amano, and K. Kaibuchi. Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22:32–39, 2001.CrossRefGoogle Scholar
  15. 15.
    Gaggioli, C., S. Hooper, C. Hidalgo-Carcedo, R. Grosse, J. F. Marshall, K. Harrington, and E. Sahai. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:1392–1400, 2007.CrossRefGoogle Scholar
  16. 16.
    Goetz, J. G., S. Minguet, I. Navarro-Lérida, J. J. Lazcano, R. Samaniego, E. Calvo, M. Tello, T. Osteso-Ibáñez, T. Pellinen, A. Echarri, A. Cerezo, A. J. P. Klein-Szanto, R. Garcia, P. J. Keely, P. Sánchez-Mateos, E. Cukierman, and M. A. Del Pozo. Biomechanical remodeling of the microenvironment by stromal Caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163, 2011.Google Scholar
  17. 17.
    Grinnell, F., L. B. Rocha, C. Iucu, S. Rhee, and H. Jiang. Nested collagen matrices: a new model to study migration of human fibroblast populations in three dimensions. Exp. Cell Res. 312:86–94, 2006.Google Scholar
  18. 18.
    Han, J., H. Chang, O. Giricz, G. Y. Lee, F. L. Baehner, J. W. Gray, M. J. Bissell, P. A. Kenny, and B. Parvin. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Comput. Biol. 6:e1000684, 2010.CrossRefGoogle Scholar
  19. 19.
    Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100:57–70, 2000.CrossRefGoogle Scholar
  20. 20.
    Harjanto, D., and M. H. Zaman. Modeling extracellular matrix reorganization in 3D environments. PLoS ONE 8:e52509, 2013.CrossRefGoogle Scholar
  21. 21.
    Jones, P. A., and Y. A. De Clerck. Extracellular matrix destruction by invasive tumor cells. Cancer Metastasis Rev. 1:289–317, 1982.CrossRefGoogle Scholar
  22. 22.
    Junkin, M., and P. K. Wong. Probing cell migration in confined environments by plasma lithography. Biomaterials 32:1848–1855, 2011.CrossRefGoogle Scholar
  23. 23.
    Kenny, P. A., G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1:84–96, 2007.CrossRefGoogle Scholar
  24. 24.
    Kim, A., N. Lakshman, and W. M. Petroll. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res. 312:3683–3692, 2006.CrossRefGoogle Scholar
  25. 25.
    Koch, T. M., S. Münster, N. Bonakdar, J. P. Butler, and B. Fabry. 3D traction forces in cancer cell invasion. PLoS ONE 7:e33476, 2012.CrossRefGoogle Scholar
  26. 26.
    Kolodney, M. S., and E. L. Elson. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268:23850–23855, 1993.Google Scholar
  27. 27.
    Kurniawan, N. A., S. Enemark, and R. Rajagopalan. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks. J. Chem. Phys. 136:065101, 2012.CrossRefGoogle Scholar
  28. 28.
    Kurniawan, N. A., L. H. Wong, and R. Rajagopalan. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks. Biomacromolecules 13:691–698, 2012.CrossRefGoogle Scholar
  29. 29.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.CrossRefGoogle Scholar
  30. 30.
    Menezes, G. C., M. Miron-Mendoza, C. H. Ho, H. Jiang, and F. Grinnell. Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices. Exp. Cell Res. 314:3081–3091, 2008.CrossRefGoogle Scholar
  31. 31.
    Menon, S., and K. A. Beningo. Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS ONE 6:e17277, 2011.CrossRefGoogle Scholar
  32. 32.
    Miller, E. D., K. Li, T. Kanade, L. E. Weiss, L. M. Walker, and P. G. Campbell. Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32:2775–2785, 2011.CrossRefGoogle Scholar
  33. 33.
    Miron-Mendoza, M., J. Seemann, and F. Grinnell. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol. Biol. Cell 19:2051–2058, 2008.CrossRefGoogle Scholar
  34. 34.
    Nelson, C. M., and M. J. Bissell. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15:342–352, 2005.CrossRefGoogle Scholar
  35. 35.
    Packard, B. Z., V. V. Artym, A. Komoriya, and K. M. Yamada. Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol. 28:3–10, 2009.CrossRefGoogle Scholar
  36. 36.
    Petroll, W. M., and L. Ma. Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices. Cell Motil. Cytoskeleton 55:254–264, 2003.CrossRefGoogle Scholar
  37. 37.
    Petroll, W. M., L. Ma, and J. V. Jester. Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116:1481–1491, 2003.CrossRefGoogle Scholar
  38. 38.
    Provenzano, P. P., D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:11, 2008.CrossRefGoogle Scholar
  39. 39.
    Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–5384, 2008.CrossRefGoogle Scholar
  40. 40.
    Riento, K., and A. J. Ridley. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4:446–456, 2003.CrossRefGoogle Scholar
  41. 41.
    Sahai, E., and C. J. Marshall. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–719, 2003.CrossRefGoogle Scholar
  42. 42.
    Scanlon, E. F., and S. Murthy. The process of metastasis. CA Cancer J. Clin. 41:301–305, 1991.CrossRefGoogle Scholar
  43. 43.
    Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3:a003228, 2011.CrossRefGoogle Scholar
  44. 44.
    Shieh, A. C., H. A. Rozansky, B. Hinz, and M. A. Swartz. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71:790–800, 2011.CrossRefGoogle Scholar
  45. 45.
    Sporn, M. B. The war on cancer. Lancet 347:1377–1381, 1996.CrossRefGoogle Scholar
  46. 46.
    Vishwanath, M., L. Ma, C. A. Otey, J. V. Jester, and W. M. Petroll. Modulation of corneal fibroblast contractility within fibrillar collagen matrices. Invest. Ophthalmol. Vis. Sci. 44:4724–4735, 2003.CrossRefGoogle Scholar
  47. 47.
    Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–522, 2011.CrossRefGoogle Scholar
  48. 48.
    Wolf, K., I. Mazo, H. Leung, K. Engelke, U. H. von Andrian, E. I. Deryugina, A. Y. Strongin, E. B. Brocker, and P. Friedl. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–277, 2003.CrossRefGoogle Scholar
  49. 49.
    Wolf, K., Y. I. Wu, Y. Liu, J. Geiger, E. Tam, C. Overall, M. S. Stack, and P. Friedl. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9:893–904, 2007.CrossRefGoogle Scholar
  50. 50.
    Wolf, K., S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20:931–941, 2009.CrossRefGoogle Scholar
  51. 51.
    Wong, L. H., N. A. Kurniawan, H.-P. Too, and R. Rajagopalan. Spatially resolved microrheology of heterogeneous biopolymer hydrogels using covalently bound microspheres. Biomech. Model. Mechanobiol. 2013. doi: 10.1007/s10237-013-0538-4.
  52. 52.
    Yu, X., and L. M. Machesky. Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLoS ONE 7:e30605, 2012.CrossRefGoogle Scholar
  53. 53.
    Zaman, M. H. The role of engineering approaches in analysing cancer invasion and metastasis. Nat. Rev. Cancer 13:596–603, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Wei Sun
    • 1
  • Nicholas Agung Kurniawan
    • 1
    • 7
    Email author
  • Alan Prem Kumar
    • 2
  • Raj Rajagopalan
    • 1
    • 3
    • 8
  • Chwee Teck Lim
    • 1
    • 4
    • 5
    • 6
  1. 1.NUS Graduate School for Integrative Sciences and EngineeringSingaporeSingapore
  2. 2.Cancer Science InstituteNational University of SingaporeSingaporeSingapore
  3. 3.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  5. 5.Department of BioengineeringNational University of SingaporeSingaporeSingapore
  6. 6.Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
  7. 7.FOM Institute AMOLFAmsterdamThe Netherlands
  8. 8.Skolkovo Institute of Science and TechnologyMoscowThe Russian Federation

Personalised recommendations