Advertisement

Cellular and Molecular Bioengineering

, Volume 3, Issue 3, pp 213–228 | Cite as

Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers

  • Nathalie Nève
  • Sean S. Kohles
  • Shelley R. Winn
  • Derek C. TrethewayEmail author
Article

Abstract

Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics.

Keywords

Chondrocytes Osteoblasts Applied fluid and mechanical stresses Cell biomechanics Cell deformation 

Notes

Acknowledgments

Development and validation of the μPIVOT was funded by a National Science Foundation Major Research Instrumentation grant (CBET-0521637) and the Engineering Technology and Industry Council. Further validation and preliminary single-cell studies were supported by an Academic Research Enhancement Award from the National Institutes of Health (EB007077). Additional support for Nathalie Nève provided by the Maseeh Fellowship. Special thanks to Dr. Randy Zelick of the Portland State University Department of Biology for providing additional cell expertise.

Supplementary material

Supplementary material 1 (WMV 1013 kb)

References

  1. 1.
    Ashkin, A., and J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science 235(4795):1517–1520, 1987.CrossRefGoogle Scholar
  2. 2.
    Ashkin, A., J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared-laser beams. Nature. 330(6150):769–771, 1987.CrossRefGoogle Scholar
  3. 3.
    Bourret, L. A., and G. A. Rodan. The role of calcium in the inhibition of cAMP accumulation in epiphyseal cartilage cells exposed to physiological pressure. J. Cell Physiol. 88(3):353–362, 1976.CrossRefGoogle Scholar
  4. 4.
    Bentley, B. J., and L. G. Leal. A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J. Fluid Mech. 167:219–240, 1986.zbMATHCrossRefGoogle Scholar
  5. 5.
    Bentley, B. J., and L. G. Leal. An experimental investigation of drop deformation and break-up in steady, two-dimensional flows. J. Fluid Mech. 167:241–283, 1986.zbMATHCrossRefGoogle Scholar
  6. 6.
    Bull, B., C. Feo, and M. Bessis. Behavior of elliptocytes under shear stress in the rheoscope and ektacytometer. Cytometry 3(4):300–304, 1983.CrossRefGoogle Scholar
  7. 7.
    Cerf, A., J. C. Cau, C. Vieu, and E. Dague. Nanomechanical properties of dead or alive single-patterned bacteria. Langmuir 25(10):5731–5736, 2009.CrossRefGoogle Scholar
  8. 8.
    Chen, N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu, and R. L. Duncan. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278:C989–C997, 2000.Google Scholar
  9. 9.
    Declercq, H., N. Van den Vreken, E. De Maeyer, R. Verbeeck, E. Schacht, L. De Ridder, and M. Cornelissen. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25:757–768, 2004.CrossRefGoogle Scholar
  10. 10.
    Donahue, T. L., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36:1363–1371, 2003.CrossRefGoogle Scholar
  11. 11.
    Eggleton, C. D., Y. P. Pawar, and K. J. Stebe. Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385:79–99, 1999.zbMATHCrossRefGoogle Scholar
  12. 12.
    Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56(1):151–160, 1989.CrossRefGoogle Scholar
  13. 13.
    Fallman, E., and O. Axner. Influence of a glass–water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers. Appl. Opt. 42:3915, 2003.CrossRefGoogle Scholar
  14. 14.
    Felder, S., and E. L. Elson. Mechanics of fibroblast locomotion: quantitative analysis of forces and motions at the leading lamellas of fibroblasts. J. Cell Biol. 111:2513–2526, 1990.CrossRefGoogle Scholar
  15. 15.
    Ferraro, J. T., M. Daneshmand, R. Bizios, and V. Rizzo. Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am. J. Physiol. Cell Physiol. 286:C831–C839, 2004.CrossRefGoogle Scholar
  16. 16.
    Francius, G., O. Domenech, M. P. Mingeot-Leclercq, and Y. F. J. Dufrene. Direct observation of Staphylococcus aureus cell wall digestion by Lysostaphin. J. Bacteriol. 190(24):7904–7909, 2008.CrossRefGoogle Scholar
  17. 17.
    Glantschnig, H., F. Varga, and M. Rumpler. Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur. J. Clin. Invest. 26:533–548, 1996.CrossRefGoogle Scholar
  18. 18.
    Guck, J., R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2):767–784, 2001.CrossRefGoogle Scholar
  19. 19.
    Happel, J., and H. Brenner. Low Reynolds Number Hydrodynamics (2nd ed.). Dordecht, the Netherlands: Kluwer Academic, p. 553, 1991.Google Scholar
  20. 20.
    Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.CrossRefGoogle Scholar
  21. 21.
    Hochmuth, R. M., and R. E. Waugh. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49:209–219, 1987.CrossRefGoogle Scholar
  22. 22.
    Hudson, S. D., F. R. Phelan, M. D. Handler, J. T. Cabral, K. B. Migler, and E. J. Amis. Microfluidic analog of the four-roll mill. Appl. Phys. Lett. 85(2):335–337, 2004.CrossRefGoogle Scholar
  23. 23.
    Im, K. B., H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park. Optical trapping forces by a focused beam through two media with different refractive indices. Opt. Commun. 226:25–31, 2003.CrossRefGoogle Scholar
  24. 24.
    Jaasma, M., W. Jackson, R. Tang, and T. Keaveny. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J. Biomech. 40(9):1938–1945, 2007.CrossRefGoogle Scholar
  25. 25.
    Johnson, D. L., T. N. McAllister, and J. A. Frangos. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. Endocrinol. Metab. 271:E205–E208, 1996.Google Scholar
  26. 26.
    Jones, G. E. Human Cell Culture Protocols. Totowa, NJ: Humana Press, 1996.Google Scholar
  27. 27.
    Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32(2):119–127, 1999.CrossRefGoogle Scholar
  28. 28.
    Kamm, R. D., and M. R. Kaazempur-Mofrad. On the molecular basis for mechanotransduction. Mech. Chem. Biosystems 1(3):201–209, 2004.Google Scholar
  29. 29.
    Kaneta, T., J. Makihara, and T. Imasaka. An “optical channel”: a technique for the evaluation of biological cell elasticity. Anal. Chem. 73(24):5791–5795, 2001.CrossRefGoogle Scholar
  30. 30.
    Kapur, S., D. J. Baylink, and K. H. W. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241–251, 2003.CrossRefGoogle Scholar
  31. 31.
    Kim, J., M. Junkin, D. H. Kim, S. Kwon, Y. S. Shin, P. K. Wong, and B. K. Gale. Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid. Nanofluid. 7:149–167, 2009.CrossRefGoogle Scholar
  32. 32.
    Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125(3):334–341, 2003.CrossRefGoogle Scholar
  33. 33.
    Kohles, S. S., N. Nève, J. D. Zimmerman, and D. C. Tretheway. Mechanical stress analysis of microfluidic environments designed for isolated biological cell investigations. ASME J. Biomech. Eng. 131:121006(10 pages), 2009.Google Scholar
  34. 34.
    Kraly, J. R., R. E. Holcomb, Q. Guan, and C. S. Henry. Review: microfluidics applications in metabolomics and metabolic profiling. Anal. Chem. Acta 653:23–35, 2009.CrossRefGoogle Scholar
  35. 35.
    Kuo, S. C., and M. P. Sheetz. Optical tweezers in cell biology. Trends Cell Biol. 2:116–118, 1992.CrossRefGoogle Scholar
  36. 36.
    Kwon, R. Y., and C. R. Jacobs. Time-dependent deformations in bone cells exposed to fluid flow in vitro: investigating the role of cellular deformation in fluid flow-induced signaling. J. Biomech. 40(14):3162–3168, 2007.CrossRefGoogle Scholar
  37. 37.
    Lang, M., C. Asbury, J. Shaevitz, and S. M. Block. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83:491–501, 2002.CrossRefGoogle Scholar
  38. 38.
    Leal, L. G. Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis. Boston, MA: Butterworth-Heinemann, 1992.Google Scholar
  39. 39.
    Leipzig, N. D., and K. A. Athanasiou. Unconfined creep compression of chondrocytes. J. Biomech. 38:77–85, 2005.Google Scholar
  40. 40.
    Liang, H., K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J. 70:1529–1533, 1996.CrossRefGoogle Scholar
  41. 41.
    Liao, G.-B., P. B. Bareil, Y. Sheng, and A. Chiou. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. Opt. Express 16(3):1996–2004, 2008.CrossRefGoogle Scholar
  42. 42.
    Liu, Y., D. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg. Evidence for localized cell heating induced by infrared optical tweezers. Biophys. J. 68:2137–2144, 1995.CrossRefGoogle Scholar
  43. 43.
    Liu, Y., G. J. Sonek, M. W. Berns, and B. J. Tromberg. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys. J. 71:2158, 1996.CrossRefGoogle Scholar
  44. 44.
    McAllister, T. N., and J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14:930–936, 1999.CrossRefGoogle Scholar
  45. 45.
    Meinhart, C. D., S. Wereley, and J. Santiago. A PIV algorithm for estimating time-averaged velocity fields. J. Fluid. Eng. 122:285, 2000.CrossRefGoogle Scholar
  46. 46.
    Mills, J. P., L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. MCB 1(3):169–180, 2004.Google Scholar
  47. 47.
    Mullender, M. G., S. J. Dijcks, R. G. Bacabac, C. M. Semeins, J. J. W. A. Van Loon, and J. Klein-Nulend. Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J. Orthop. Res. 24(6):1170–1177, 2006.CrossRefGoogle Scholar
  48. 48.
    Neuman, K. C., E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77(5):2856, 1999.CrossRefGoogle Scholar
  49. 49.
    Nève, N., J. K. Lingwood, J. Zimmerman, S. S. Kohles, and D. C. Tretheway. The μPIVOT: an integrated particle image velocimeter and optical tweezers instrument for microenvironment investigations. Meas. Sci. Technol. 10(9):095403(11 pp.), 2008.Google Scholar
  50. 50.
    Nguyen, M., and S. Wereley. Fundamentals and Applications of Microfluidics. Norwood, MA: Artech Hous Publishers, 2002.zbMATHGoogle Scholar
  51. 51.
    Parkkinen, J. J., J. Ikonen, M. J. Laman, J. Laakonen, M. Tammi, and H. J. Helminen. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys. 300:458–465, 1993.CrossRefGoogle Scholar
  52. 52.
    Pasternak, C., and E. L. Elson. Lymphocyte mechanical response triggered by cross-linking surface receptors. J. Cell Biol. 100:860–872, 1985.CrossRefGoogle Scholar
  53. 53.
    Peake, M. A., L. M. Cooling, J. L. Magnay, P. B. M. Thomas, and A. J. El Haj. Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells. J. Appl. Physiol. 89(6):2498–2507, 2000.Google Scholar
  54. 54.
    Petersen, N. O., W. B. McConnaughey, and E. L. Elson. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin b. Proc. Natl Acad. Sci. USA 79:5327–5331, 1982.CrossRefGoogle Scholar
  55. 55.
    Radmacher, M. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol. 68:67–90, 2002.CrossRefGoogle Scholar
  56. 56.
    Ramaswamy, S., and L. G. Leal. The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a newtonian fluid. J. Non-Newtonian Fluid Mech. 85:127, 1999.zbMATHCrossRefGoogle Scholar
  57. 57.
    Reich, K. M., C. V. Gay, and J. A. Frangos. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143:100–104, 1990.CrossRefGoogle Scholar
  58. 58.
    Roelofsen, J., J. Klein-Nulend, and E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28:1493–1503, 1995.CrossRefGoogle Scholar
  59. 59.
    Rotsch, C., and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts—an atomic force microscopy study. Biophys. J. 78:520–535, 2000.CrossRefGoogle Scholar
  60. 60.
    Sato, M., M. J. Levesque, and R. M. Nerem. An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells. J. Biomech. Eng. 109:27–34, 1987.CrossRefGoogle Scholar
  61. 61.
    Schmid-Schönbein, G. W., K. L. Sung, H. Tözeren, R. Skalak, and S. Chien. Passive mechanical properties of human leukocytes. Biophys. J. 36(1):243–256, 1981.CrossRefGoogle Scholar
  62. 62.
    Schmid-Schönbein, H., R. Wells, and J. Goldstone. Influence of deformability of human red cells upon blood viscosity. Circ. Res. 25:131–143, 1969.Google Scholar
  63. 63.
    Sleep, J., D. Wilson, R. Simmons, and W. Gratzer. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys. J. 77:3085–3095, 1999.CrossRefGoogle Scholar
  64. 64.
    Smith, L. R., S. F. Rusk, S. F. Ellison, P. Wessells, K. Tsuchiya, D. R. Carter, W. E. Caler, L. I. Sandel, and D. J. Schurman. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J. Orthop. Res. 14:53–60, 1996.CrossRefGoogle Scholar
  65. 65.
    Sunk, I. G., S. Trattnig, W. B. Graninger, L. Amoyo, B. Tuerk, C. W. Steiner, J. S. Smolen, and K. Bobacz. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary. Arthritis Res. Ther. 8(4):R106, 2006.CrossRefGoogle Scholar
  66. 66.
    Thoumine, O., A. Ott, O. Cardoso, and J.-J. Meister. Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods 39:47–62, 1999.CrossRefGoogle Scholar
  67. 67.
    Titushkin, I., and M. Cho. Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys. J. 90:2582–2591, 2006.CrossRefGoogle Scholar
  68. 68.
    Toyoda, T., B. B. Seedhom, J. Q. Yao, J. Kirkham, S. Brookes, and W. A. Bonass. Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum. 48(10):2865–2872, 2003.CrossRefGoogle Scholar
  69. 69.
    Tretheway, D. C., and L. G. Leal. Surfactant and viscoelastic effects on drop deformation in 2-D extensional flow. AIChE J. 45(5):929–937, 1999.CrossRefGoogle Scholar
  70. 70.
    Tretheway, D. C., and L. G. Leal. Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger Fluid. J. Non-Newtonian Fluid Mech. 99:81–108, 2001.zbMATHCrossRefGoogle Scholar
  71. 71.
    Tretheway, D. C., and C. D. Meinhart. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14:L9–L12, 2002.CrossRefGoogle Scholar
  72. 72.
    Wei, M.-T., A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang. A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt. Express 16:8594–8603, 2008.CrossRefGoogle Scholar
  73. 73.
    Wilkes, R. P., and K. A. Athanasiou. The intrinsic incompressibility of osteoblast-like cells. Tissue Eng. 2(3):167–181, 1996.CrossRefGoogle Scholar
  74. 74.
    Wu, L., M. Tsutahara, L. Kim, and M. Ha. Numerical simulations of droplet formation in a cross-junction microchannel by the lattice Boltzmann method. Int. J. Numer. Meth. Fluids. 57:793–810, 2008.zbMATHCrossRefGoogle Scholar
  75. 75.
    Yang, C. H., K. S. Huang, P. W. Lin, and Y. C. Lin. Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles. Sens. Actuators B Chem. 124(2):510–516, 2007.CrossRefGoogle Scholar
  76. 76.
    Yi, C. Q., C. W. Li, S. L. Ji, and M. S. Yang. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560:1–23, 2006.CrossRefGoogle Scholar
  77. 77.
    You, J., G. C. Reilly, X. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue, and C. R. Jacobs. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276:13365–13371, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Nathalie Nève
    • 1
  • Sean S. Kohles
    • 1
    • 2
  • Shelley R. Winn
    • 3
    • 4
  • Derek C. Tretheway
    • 1
    Email author
  1. 1.Department of Mechanical & Materials EngineeringPortland State UniversityPortlandUSA
  2. 2.Department of SurgeryOregon Health & Science UniversityPortlandUSA
  3. 3.Department of Restorative DentistryOregon Health & Science UniversityPortlandUSA
  4. 4.Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandUSA

Personalised recommendations