Advertisement

In vivo Multimotor Force–Velocity Curves by Tracking and Sizing Sub-Diffraction Limited Vesicles

  • 104 Accesses

  • 12 Citations

Abstract

Determining in vivo force–velocity relationships of motor proteins is a critical step toward clarifying how they accomplish intracellular transport. We show that in vivo force–velocity curves corresponding to an estimated 1, 2, and 3 motors-per-vesicle can be constructed by tracking and sizing transported vesicles. The force range for these curves would normally be constrained by diffraction limited diameter measurements. However, we present a new method that uses the image intensity obtained with differential interference contrast microscopy as a proxy for vesicle diameters smaller than the diffraction limit. We calibrate this novel sizing method in vitro with polystyrene microsphere standards and apply it in vivo to vesicles. The resulting diameter vs. velocity data for large, small, and sub-diffraction limited vesicles is used to construct force–velocity curves that extend the force range of our previous curves. These extended 1-, 2-, and 3-motor in vivo curves qualitatively agree with a simple model of load sharing for motors that jointly transport a single vesicle.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

References

  1. 1.

    Barkus, R.V., et al., Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol Biol Cell, 2008. 19(1): p. 274-83.

  2. 2.

    Bausch, A.R., W. Moller, and E. Sackmann, Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J, 1999. 76(1 Pt 1): p. 573-9.

  3. 3.

    Bednarski, E., C.E. Ribak, and G. Lynch, Suppression of cathepsins B and L causes a proliferation of lysosomes and the formation of meganeurites in hippocampus. J Neurosci, 1997. 17(11): p. 4006-21.

  4. 4.

    Brady, S.T., R.J. Lasek, and R.D. Allen, Fast axonal transport in extruded axoplasm from squid giant axon. Science, 1982. 218(4577): p. 1129-31.

  5. 5.

    Breuer, A.C., et al., Fast axonal transport in amyotrophic lateral sclerosis: an intra-axonal organelle traffic analysis. Neurology, 1987. 37(5): p. 738-48.

  6. 6.

    Clemen, A.E., et al., Force-dependent stepping kinetics of myosin-V. Biophys J, 2005. 88(6): p. 4402-10.

  7. 7.

    de Vries, A.H., et al., Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J, 2005. 88(3): p. 2137-44.

  8. 8.

    Foo, J.J., K.K. Liu, and V. Chan, Viscous drag of deformed vesicles in optical trap: experiments and simulations. AIChE Journal, 2004. 50(1): p. 249 - 254.

  9. 9.

    Friberg, H., et al., Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci, 1998. 18(14): p. 5151-9.

  10. 10.

    Gagliano, J., et al. Kinesin velocity increases with the number of motors pulling a viscoelastic load (submitted).

  11. 11.

    Gennerich, A. and D. Schild, Finite-particle tracking reveals submicroscopic-size changes of mitochondria during transport in mitral cell dendrites. Phys Biol, 2006. 3(1): p. 45-53.

  12. 12.

    Grallert, A., et al., In vivo movement of the type V myosin Myo52 requires dimerisation but is independent of the neck domain. J Cell Sci, 2007. 120(Pt 23): p. 4093-8.

  13. 13.

    Hill, D. B., Changes in the number of molecular motors driving vesicle transport in PC12, Physics Ph.D. dissertation. Wake Forest University, Winston-Salem, 2003

  14. 14.

    Hill, D.B., et al., Fast vesicle transport in PC12 neurites: velocities and forces. Eur Biophys J, 2004. 33(7): p. 623-32.

  15. 15.

    Hirakawa, E., H. Higuchi, and Y.Y. Toyoshima, Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc Natl Acad Sci U S A, 2000. 97(6): p. 2533-7.

  16. 16.

    Hirokawa, N., et al., Kinesin associates with anterogradely transported membranous organelles in vivo. J. Cell Biol., 1991. 114: p. 295–302.

  17. 17.

    Hunt, A.J., F. Gittes, and J. Howard, The force exerted by a single kinesin molecule against a viscous load. Biophys J, 1994. 67: p. 766-781.

  18. 18.

    Jasinski, A., A. Gorbman, and T.J. Hara, Rate of movement and redistribution of stainable neurosecretory granules in hypothalamic neurons. Science, 1966. 154(750): p. 776-8.

  19. 19.

    Kaether, C., P. Skehel, and C.G. Dotti, Axonal Membrane Proteins are Transported in Distinct Carriers: A Two-Color Video Microscopy Study in Cultured Hippocampal Neurons. Mol Biol Cell, 2000. 11: p. 1213–1224.

  20. 20.

    Kawaguchi, K. and S. Ishiwata, Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem Biophys Res Commun, 2000. 272(3): p. 895-9.

  21. 21.

    Kawaguchi, K. and S.c. Ishiwata, Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem. Biophys. Res. Commun., 2000. 272: p. 895-899.

  22. 22.

    Kidwai, A.M. and S. Ochs, Components of fast and slow phases of axoplasmic flow. J Neurochem, 1969. 16(7): p. 1105-12.

  23. 23.

    Kojima, H., et al., Mechanics of Single Kinesin Molecules Measured by Optical Trapping Nanometry. Biophys. J., 1997. 73(4): p. 2012-2022.

  24. 24.

    Kural, C., et al., Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science, 2005. 308(5727): p. 1469-72.

  25. 25.

    Laib, J.A., et al., The reciprocal coordination and mechanics of molecular motors in living cells. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3190-5.

  26. 26.

    Levi, V., et al., Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophys J, 2006. 90(1): p. 318-27.

  27. 27.

    Ligon, L.A., et al., A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J. Biol. Chem., 2004. 279(18): p. 19201-19208.

  28. 28.

    Luby-Phelps, K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol, 2000. 192: p. 189-221.

  29. 29.

    Macosko, J.C., et al., Fewer active motors per vesicle may explain slowed vesicle transport in chick motoneurons after three days in vitro. Brain Res., 2008. 1211: p. 6-12.

  30. 30.

    Mallik, R., et al., Cytoplasmic dynein functions as a gear in response to load. Nature, 2004. 427(6975): p. 649-52.

  31. 31.

    Martin, E.J., et al., Analysis of Huntingtin-associated protein 1 in mouse brain and immortalized striatal neurons. J Comp Neurol, 1999. 403(4): p. 421-30.

  32. 32.

    Martinez, J.E., et al., On the use of in vivo cargo velocity as a biophysical marker. Biochem Biophys Res Commun, 2007. 353(3): p. 835-40.

  33. 33.

    Mehta, A.D., et al., Myosin-V is a processive actin-based motor. Nature, 1999. 400(6744): p. 590-3.

  34. 34.

    Meyhofer, E. and J. Howard, The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci U S A, 1995. 92(2): p. 574-8.

  35. 35.

    Moreno, S., R. Nardacci, and M.P. Ceru, Regional and ultrastructural immunolocalization of copper-zinc superoxide dismutase in rat central nervous system. J Histochem Cytochem, 1997. 45(12): p. 1611-22.

  36. 36.

    Muller, M.J., S. Klumpp, and R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4609-14.

  37. 37.

    Nan, X., P.A. Sims, and X.S. Xie, Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem, 2008. 9(5): p. 707-12.

  38. 38.

    Pilling, A.D., et al., Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell, 2006. 17(4): p. 2057-68.

  39. 39.

    Schnapp, B.J. and T.S. Reese, Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A, 1989. 86(5): p. 1548-52.

  40. 40.

    Shingyoji, C., et al., Dynein arms are oscillating force generators. Nature, 1998. 393(6686): p. 711-4.

  41. 41.

    Shtridelman, Y., et al., Force–velocity curves of motor proteins cooperating in vivo. Cell Biochem. Biophys., 52, 19–29, 2008.

  42. 42.

    Svoboda, K. and S.M. Block, Force and velocity measured for single kinesin molecules. Cell, 1994. 77(5): p. 773-84.

  43. 43.

    Toba, S., et al., Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci U S A, 2006. 103(15): p. 5741-5.

  44. 44.

    Uemura, S., et al., Mechanochemical coupling of two substeps in a single myosin V motor. Nat Struct Mol Biol, 2004. 11(9): p. 877-83.

  45. 45.

    Uyeda, T.Q., et al., Quantized velocities at low myosin densities in an in vitro motility assay. Nature, 1991. 352(6333): p. 307-11.

  46. 46.

    Visscher, K., M.J. Schnitzer, and S.M. Block, Single kinesin molecules studied with a molecular force clamp. Nature, 1999. 400: p. 184-189.

  47. 47.

    Welte, M.A., Bidirectional transport along microtubules. Curr Biol, 2004. 14(13): p. R525-37.

  48. 48.

    Zahn, T.R., et al., Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104. Traffic, 2004. 5(7): p. 544-59.

Download references

Acknowledgments

We thank Keith Bonin for helpful discussions for input at various stages. This work was supported by a start-up grant by Wake Forest University to JCM, an NIH grant (NS-053493) to GMH and by an NIH grant (AG-020996) to DAD.

Author information

Correspondence to Jed C. Macosko.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shtridelman, Y., Holzwarth, G.M., Bauer, C.T. et al. In vivo Multimotor Force–Velocity Curves by Tracking and Sizing Sub-Diffraction Limited Vesicles. Cel. Mol. Bioeng. 2, 190–199 (2009). https://doi.org/10.1007/s12195-009-0064-8

Download citation

Keywords

  • Processive molecular motors
  • Cooperative fast vesicle transport
  • Anterograde retrograde traffic
  • Intracellular motion
  • DIC microscopy
  • Kinesin
  • Dyenin
  • Myosin
  • Particle tracking