Advertisement

From Single Molecules to Living Cells: Nanomechanical Measurements of Cell Adhesion

Abstract

This review highlights complementary force probe techniques and illustrates how these approaches provide different, but complementary insight into molecular mechanisms of cell adhesion. As a model system, we focus on classical cadherins, which mediate cell–cell adhesion in all solid tissues. The experimental approaches described probe cadherin binding from single molecules to cells, and quantify the kinetics, energetics, and mechanical strengths of cadherin-mediated adhesive contacts. The cumulative findings of these complementary studies reveal complexities of the cadherin binding mechanism, and quantify relevant bond parameters. Importantly these different approaches demonstrate how the strengths and kinetics of cadherin bonds at the single molecule level govern the initial dynamics of adhesion between living cells. The findings also exemplify the capacity of these different force probe techniques to identify novel properties of molecular interactions governing biological adhesion.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    Al-Amoudi A., D. C. Diez, M. J. Betts, A. S. Frangakis 2007 The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–837

  2. 2.

    Bayas M. V., A. Kearney, A. Avramovic, P. A. van der Merwe, D. E. Leckband 2007 Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58. J. Biol. Chem. 282:5589–5596

  3. 3.

    Bayas M. V., A. Leung, E. Evans, D. Leckband 2006 Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys. J. 90:1385–1395

  4. 4.

    Boggon T. J., J. Murray, S. Chappuis-Flament, E. Wong, B. M. Gumbiner, L. Shapiro 2002 C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313

  5. 5.

    Born M., Wolf, E. 1980 Principles of Optics. Oxford: Pergamon

  6. 6.

    Chang K. C., D. F. Tees, D. A. Hammer 2000 The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. USA 97:11262–11267

  7. 7.

    Chappuis-Flament S., E. Wong, L. D. Hicks, C. M. Kay, B. M. Gumbiner 2001 Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154:231–243

  8. 8.

    Chesla S. E., P. Li, S. Nagarajan, P. Selvaraj, C. Zhu 2000 The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of fcgammariii (cd16). J. Biol. Chem. 275:10235–10246

  9. 9.

    Chesla S. E., P. Selvaraj, C. Zhu 1998 Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J. 75:1553–1572

  10. 10.

    Chien Y.-H., N. Jiang, F. Li, F. Zhang, C. Zhu, D. Leckband (2008) Two-stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J. Biol. Chem. 283:1848–1856

  11. 11.

    Evans E., D. Berk, A. Leung 1991 Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J. 59:838–848

  12. 12.

    Evans E., K. Ritchie 1997 Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555

  13. 13.

    Evans E., K. Ritchie, R. Merkel 1995 Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587

  14. 14.

    Fernandez J. M., H. Li 2004 Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678

  15. 15.

    Guilford P., Hopkins J., Harraway J., McLeod M., Harawira P., Taite H., Scoular R., Miller A., Reeve AE (1998). E-cadherin germline mutations in familial gastric cancer. Nature 392:402–405

  16. 16.

    Gumbiner B. M. 2005 Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6:622–634

  17. 17.

    Handschuh G., Candidusand S., Luber B., Reich U., Schott C., Oswald S. 1999 Tumor associated e-cadherin mutations alter cellular morphology, decrease cellular adhesion, and increase cellular motility. Oncogene 18:4301–4312

  18. 18.

    He W., Cowin, P., Stokes, D.L. 2003 Untangling desmosomal knots with electron tomography. Science 302:109–113

  19. 19.

    Helm C. A., J. N. Israelachvili, P. M. McGuiggan 1989 Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246:919–922

  20. 20.

    Huang J., J. Chen, S. E. Chesla, T. Yago, P. Mehta, R. P. McEver, C. Zhu, M. Long 2004 Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics. J. Biol. Chem. 279:44915–44923

  21. 21.

    Hukkanen E. J., J. A. Wieland, A. Gewirth, D. E. Leckband, R. D. Braatz 2005 Multiple-bond kinetics from single-molecule pulling experiments: evidence for multiple ncam bonds. Biophys. J. 89:3434–3445

  22. 22.

    Hunter R. 1989 Foundations of Colloid Science. Oxford: Oxford University Press

  23. 23.

    Israelachvili J. 1973 Thin film studies using multiple-beam interferomtry. J. Colloid Interface Sci. 44:259–272

  24. 24.

    Israelachvili J. N. (1987) Solvation forces and liquid structure, as probed by direct force measurements. Acc. Chem. Res. 20:415–421

  25. 25.

    Israelachvili J. 1992 Intermolecular and Surface Forces. New York: Academic Press

  26. 26.

    Israelachvili J. N., Adams, G. E. 1978 Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans. I. 75:975–1001

  27. 27.

    Israelachvili J., McGuiggan, P. 1990 Adhesion and short-range forces between surfaces: new apparatus for surface force measurements. J. Mater. Res. 5:2223–2231

  28. 28.

    Israelachvili J. N., Pashley, R. M. 1983 Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature. 306:249–250

  29. 29.

    Izrailev S., S. Stepaniants, M. Balsera, Y. Oono, K. Schulten 1997 Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72:1568–1581

  30. 30.

    Jeppesen C., J. Y. Wong, T. L. Kuhl, J. N. Israelachvili, N. Mullah, S. Zalipsky, C. M. Marques 2001 Impact of polymer tether length on multiple ligand-receptor bond formation. Science. 293:465–468

  31. 31.

    Johnson C. P., I. Fujimoto, U. Rutishauser, D. E. Leckband 2005 Direct evidence that neural cell adhesion molecule (ncam) polysialylation increases intermembrane repulsion and abrogates adhesion. J. Biol. Chem. 280:137–145

  32. 32.

    Johnson K. L., Kendall, K., Roberts, A. D. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324:301–313

  33. 33.

    Lauffenburger D. A., A. F. Horwitz 1996 Cell migration: a physically integrated molecular process. Cell 84:359–369

  34. 34.

    Leckband D., J. Israelachvili 2001 Intermolecular forces in biology. Q. Rev. Biophys. 34:105–267

  35. 35.

    Leckband D. E., Kuhl, T. L., Wang, H. K., Müller, W., Ringsdorf, H. 1995. 4–4–20 anti-fluorescyl igg fab’ recognition of membrane bound hapten: direct evidence for the role of protein and interfacial structure. Biochemistry 34:11467–11478

  36. 36.

    Leckband D., Müller, W., Schmitt, F.-J., Ringsdorf, H. 1995 Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys. J. 69:1162–1169

  37. 37.

    Leckband D., Schmitt, F.-J., Israelachvili, J., Knoll, W. 1994 Direct force measurements of specific and nonspecific protein interactions. Biochemistry 33:4611–4624

  38. 38.

    Li F., F. Pincet, E. Perez, W. S. Eng, T. J. Melia, J. E. Rothman, D. Tareste 2007 Energetics and dynamics of snarepin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14:890–896

  39. 39.

    Long M., H. Zhao, K. S. Huang, C. Zhu 2001 Kinetic measurements of cell surface e-selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29:935–946

  40. 40.

    Marshall B. T., K. K. Sarangapani, J. Lou, R. P. McEver, C. Zhu 2005 Force history dependence of receptor-ligand dissociation. Biophys. J. 88:1458–1466

  41. 41.

    Mohandas N., E. Evans 1984 Adherence of sickle erythrocytes to vascular endothelial cells: requirement for both cell membrane changes and plasma factors. Blood 64:282–287

  42. 42.

    Perret E., A. Leung, H. Feracci, E. Evans 2004 Trans-bonded pairs of e-cadherin exhibit a remarkable hierarchy of mechanical strengths. Proc. Natl. Acad. Sci USA 101:16472–16477

  43. 43.

    Pokutta S., K. Herrenknecht, R. Kemler, J. Engel 1994 Conformational changes of the recombinant extracellular domain of e-cadherin upon calcium binding. Eur. J. Biochem. 223: 1019–1026

  44. 44.

    Prakasam A. K., V. Maruthamuthu, D. E. Leckband 2006 Similarities between heterophilic and homophilic cadherin adhesion. Proc. Natl. Acad. Sci. USA 103:15434–15439

  45. 45.

    Shi Q., Y. H. Chien, D. Leckband (2008) Biophysical properties of cadherin bonds do not predict cell sorting. J. Biol. Chem. 283:28454–28463

  46. 46.

    Sivasankar S., B. Gumbiner, D. Leckband 2001 Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains. Biophys. J. 80:1758–1768

  47. 47.

    Sotomayor M., K. Schulten 2008 The allosteric role of the Ca2+ switch in adhesion and elasticity of c-cadherin. Biophys. J. 94:4621–4633

  48. 48.

    Sulchek T. A., R. W. Friddle, K. Langry, E. Y. Lau, H. Albrecht, T. V. Ratto, S. J. DeNardo, M. E. Colvin, A. Noy 2005 Dynamic force spectroscopy of parallel individual mucin1-antibody bonds. Proc. Natl. Acad. Sci. USA 102:16638–16643

  49. 49.

    Takeichi M. (1993) Cadherins in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 5:806–811

  50. 50.

    Tolansky S. 1951 Applications of multiple-beam interferometry. Nature 167:815–816

  51. 51.

    Tsukasaki Y., K. Kitamura, K. Shimizu, A. H. Iwane, Y. Takai, T. Yanagida 2007 Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J. Mol. Biol. 367:996–1006

  52. 52.

    Williams T. E., S. Nagarajan, P. Selvaraj, C. Zhu 2000 Concurrent and independent binding of fcgamma receptors iia and iiib to surface-bound igg. Biophys. J. 79:1867–1875

  53. 53.

    Williams T. E., S. Nagarajan, P. Selvaraj, C. Zhu 2001 Quantifying the impact of membrane microtopology on effective two-dimensional affinity. J. Biol. Chem. 276:13283–13288

  54. 54.

    Williams T. E., P. Selvaraj, C. Zhu 2000 Concurrent binding to multiple ligands: kinetic rates of cd16b for membrane-bound igg1 and igg2. Biophys. J. 79:1858–1866

  55. 55.

    Wong J. Y., T. L. Kuhl, J. N. Israelachvili, N. Mullah, S. Zalipsky 1997 Direct measurement of a tethered ligand-receptor interaction potential. Science 275:820–822

  56. 56.

    Yap A. S., W. M. Brieher, B. M. Gumbiner 1997 Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13:119–146

  57. 57.

    Yeung C., Purves, T., Kloss, A. A., Kuhl, T. L., Sligar, S., Leckband, D. 1999 Cytochrome c recognition of immobilized, orientational variants of cytochrome b5: direct force and equilibrium binding measurements. Langmuir 15:6829–6836

  58. 58.

    Zhang F., W. D. Marcus, N. H. Goyal, P. Selvaraj, T. A. Springer, C. Zhu 2005 Two-dimensional kinetics regulation of alphalbeta2-icam-1 interaction by conformational changes of the alphal-inserted domain. J. Biol. Chem. 280:42207–42218

  59. 59.

    Zhu B., S. Chappuis-Flament, E. Wong, I. E. Jensen, B. M. Gumbiner, D. Leckband 2003 Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys. J. 84: 4033–4042

  60. 60.

    Zhu B., E. A. Davies, P. A. van der Merwe, T. Calvert, D. E. Leckband 2002 Direct measurements of heterotypic adhesion between the cell surface proteins cd2 and cd48. Biochemistry 41:12163–12170

  61. 61.

    Zhu C., M. Long, S. E. Chesla, P. Bongrand 2002 Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues. Ann. Biomed. Eng. 30:305–314

Download references

Acknowledgment

This work was supported by 2RO1 NIH GM51338.

Author information

Correspondence to Deborah Leckband.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 17,826 kb)

(PDF 17,826 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leckband, D. From Single Molecules to Living Cells: Nanomechanical Measurements of Cell Adhesion. Cel. Mol. Bioeng. 1, 312–326 (2008) doi:10.1007/s12195-008-0029-3

Download citation

Keywords

  • Cadherin
  • Cell adhesion
  • Single bond rupture
  • Surface force apparatus
  • Micropipette manipulation
  • Biphasic kinetics
  • Molecular mechanics