Advertisement

Investigation of anisotropic fishing line-based phantom as tool in quality control of diffusion tensor imaging

  • Edna Marina de SouzaEmail author
  • Eduardo Tavares Costa
  • Gabriela Castellano
Article
  • 32 Downloads

Abstract

This work proposes a low-cost, fishing line-based phantom for quality control of diffusion tensor imaging (DTI). The device was applied to investigate the relationship between DTI indexes (DTIi) and imaging acquisition parameters. A Dyneema® fishing line phantom was built with fiber bundles of different thicknesses. DTI acquisitions were performed in a 3T magnetic resonance imaging scanner using an 8-channel and a 32-channel head coil. For each coil, the following acquisition parameters were changed, one at a time: diffusion sensitivity factor (b value), echo time, sensitivity encoding, voxel size, number of signal averages, and number of diffusion gradient directions (NDGD). DTIi including fractional anisotropy, relative anisotropy (RA), linear anisotropy (CL), and planar anisotropy (CP) were calculated for each image; the data were analyzed using the coefficient of variation (CV) and distributions of DTIi values. The 32-channel head coil presented higher CV values for the DTIi RA, CL, and CP when voxel size was changed. Using the phantom, dependences between diffusion-related parameters (b value and NDGD) and DTIi were also observed; the majority of these were for the smaller thickness fiber bundles. The device proved to be useful for the verification of the DTI performance over time.

Keywords

MRI DTI Phantom Quality control 

Notes

Acknowledgements

The authors would like to thank the staff at the Biomedical Engineering Center, School of Electrical and Computer Engineering (UNICAMP) for building the phantom, and the 3T MRI scanner of Clinics Hospital (UNICAMP) staff for assistance with scanner access.

Author contributions

Study conception and design: EMS, ETC, GC. Acquisition of data: EMS. Analysis and interpretation of data: EMS, GC. Drafting of manuscript: EMS, ETC, GC. Critical revision: ETC, GC. Approval of the final version: EMS, ETC, GC.

Funding

This work was supported by São Paulo Research Foundation (FAPESP, Brazil, Grant—2013/07559-3) through BRAINN (Brazilian Institute of Neuroscience and Neurotechnology), and by the National Council for Scientific and Technological Development (CNPQ, Brazil, Grant—310860/2014-8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed.

References

  1. 1.
    Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.CrossRefGoogle Scholar
  2. 2.
    Yoshida S, Oishi K, Faria AV, Mori S. Diffusion tensor imaging of normal brain development. Pediatr Radiol. 2013;43(1):15–27.CrossRefGoogle Scholar
  3. 3.
    Sternberg EJ, Lipton ML, Burns J. Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR. 2014;35(3):439–44.CrossRefGoogle Scholar
  4. 4.
    Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24(3):478–88.CrossRefGoogle Scholar
  5. 5.
    Hellerbach A, Schuster V, Jansen A, Sommer J. MRI phantoms—are there alternatives to agar? PLoS One. 2013;8(8):e70343.CrossRefGoogle Scholar
  6. 6.
    Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, Navia B, Mori S, Ekholm S, Schifitto G, Zhong J. Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. Neuroimage. 2011;56(3):1398–411.CrossRefGoogle Scholar
  7. 7.
    Kim SJ, Choi CG, Kim JK, Yun SC, Jahng GH, Jeong HK, Kim EJ. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: evaluation using a diffusional anisotropic phantom. Korean J Radiol. 2015;16(2):297–303.CrossRefGoogle Scholar
  8. 8.
    Ebrahimi B, Swanson SD, Chupp TE. A microfabricated phantom for quantitative MR perfusion measurements: validation of singular value decomposition deconvolution method. IEEE Trans Biomed Eng. 2010;57(11):2730–2736.CrossRefGoogle Scholar
  9. 9.
    Teh I, Zhou FL, Hubbard Cristinacce PL, Parker GJ, Schneider JE. Biomimetic phantom for cardiac diffusion MRI. J Magn Reson Imaging. 2015;43:594–600Google Scholar
  10. 10.
    Latt J, Nilsson M, Rydhog A, Wirestam R, Stahlberg F, Brockstedt S. Effects of restricted diffusion in a biological phantom: a q-space diffusion MRI study of asparagus stems at a 3T clinical scanner. Magma. 2007;20(4):213–22.CrossRefGoogle Scholar
  11. 11.
    Komlosh ME, Lizak MJ, Horkay F, Freidlin RZ, Basser PJ. Observation of microscopic diffusion anisotropy in the spinal cord using double-pulsed gradient spin echo MRI. Magn Reson Med. 2008;59(4):803–9.CrossRefGoogle Scholar
  12. 12.
    Fieremans E. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson. 2008;190(2):189–199.CrossRefGoogle Scholar
  13. 13.
    Lorenz R, Kreher BW, Hennig J, Anisotropic phantoms for quantitative diffusion tensor imaging and fib. In: Proceedings of ISMRM 14th scientific meeting. Seattle, USA; 2006.Google Scholar
  14. 14.
    Farrher E, Kaffanke J, Celik AA, Stocker T, Grinberg F, Shah NJ. Novel multisection design of anisotropic diffusion phantoms. Magn Reson Imaging. 2012;30(4):518–26.CrossRefGoogle Scholar
  15. 15.
    Kleinberg RL. Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter rho 2. Magn Reson Imaging. 1996;14(7–8):761–7.CrossRefGoogle Scholar
  16. 16.
    Slijkerman WF, Hofman JP. Determination of surface relaxivity from NMR diffusion measurements. Magn Reson Imaging. 1998;16(5–6):541–4.CrossRefGoogle Scholar
  17. 17.
    Lorenz R, Kreher BW, Henning J. P.o.I.t.S.M.. Anisotropic Fiber Phantom for DTI validation on a clinical scanner, ISMRM 14th Scientific Meeting, Seattle, USA; 2006. p. 1226.Google Scholar
  18. 18.
    Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36(6):893–906.CrossRefGoogle Scholar
  19. 19.
    Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med. 2011;65(6):1532–56.CrossRefGoogle Scholar
  20. 20.
    Leemans A, Jeurissen B, Sijbers J, Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th annual meeting of intl soc mag reson med, Hawaii, USA; 2009. p. 3537Google Scholar
  21. 21.
    Basir A, de Groot P, Grundeman PF, Tersteeg C, Maas C, Barendrecht A, van Herwaarden J, Kluin J, Moll F, Pasterkamp G, Roest M. In Vitro hemocompatibility testing of dyneema purity fibers in blood contact. Innovations (Phila). 2015;10(3):195–201.Google Scholar
  22. 22.
    Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH. Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp. 2010;31(3):378–90.Google Scholar
  23. 23.
    Poveda F, Gil D, Marti E, Andaluz A, Ballester M, Carreras F. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography. Rev Esp Cardiol (Engl Ed). 2013;66(10):782–90.CrossRefGoogle Scholar
  24. 24.
    Qin X, Wang S, Shen M, Zhang X, Wagner MB, Fei B. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound. Proc SPIE. 2014;9036:90361O.CrossRefGoogle Scholar
  25. 25.
    Helenius J, Soinne L, Perkio J, Salonen O, Kangasmaki A, Kaste M, Carano RA, Aronen HJ, Tatlisumak T. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol. 2002;23(2):194–9.Google Scholar
  26. 26.
    Widjaja E, Mahmoodabadi SZ, Rea D, Moineddin R, Vidarsson L, Nilsson D. Effects of gradient encoding and number of signal averages on fractional anisotropy and fiber density index in vivo at 1.5 T. Acta Radiol. 2009;50(1):106–13.CrossRefGoogle Scholar
  27. 27.
    Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84.CrossRefGoogle Scholar
  28. 28.
    Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama S, Aso T, Fukuyama H, Kikuta K, Togashi K. Fractional anisotropy and mean diffusivity: comparison between 3.0-T and 1.5-T diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed. 2007;20(8):743–8.CrossRefGoogle Scholar
  29. 29.
    Santarelli X, Garbin G, Ukmar M, Longo R. Dependence of the fractional anisotropy in cervical spine from the number of diffusion gradients, repeated acquisition and voxel size. Magn Reson Imaging. 2010;28(1):70–6.CrossRefGoogle Scholar
  30. 30.
    Giannelli M, Cosottini M, Michelassi MC, Lazzarotti G, Belmonte G, Bartolozzi C, Lazzeri M. Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions. J Appl Clin Med Phys. 2009;11(1):2927.Google Scholar
  31. 31.
    Qin W, Yu CS, Zhang F, Du XY, Jiang H, Yan YX, Li KC. Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn Reson Med. 2009;61(4):755–60.CrossRefGoogle Scholar
  32. 32.
    Alexander AL, Lee JE, Wu YC, Field AS. Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Neuroimaging Clin N Am. 2006;16(2):299–309, xi.CrossRefGoogle Scholar
  33. 33.
    Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med. 2004;52(5):979–93.CrossRefGoogle Scholar
  34. 34.
    Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE. K.A. Il’yasov, Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol. 2006;16(8):1651–8.CrossRefGoogle Scholar
  35. 35.
    Melhem ER, Itoh R, Jones L, Barker PB. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR. 2000;21(10):1813–20.Google Scholar
  36. 36.
    Klodowski K, Krzyzak AT. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences. Magn Reson Imaging. 2016;34(4):404–9.CrossRefGoogle Scholar
  37. 37.
    Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010;51(4):1384–94.CrossRefGoogle Scholar
  38. 38.
    Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47(6):1083–99.CrossRefGoogle Scholar
  39. 39.
    Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.CrossRefGoogle Scholar
  40. 40.
    Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2019

Authors and Affiliations

  1. 1.Biomedical Engineering CenterUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Biomedical Engineering Department, School of Electrical and Computer EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  3. 3.Neurophysics Group, Gleb Wataghin Physics InstituteUniversity of Campinas (UNICAMP)CampinasBrazil
  4. 4.Brazilian Institute of Neuroscience and Neurotechnology (BRAINN)CampinasBrazil

Personalised recommendations