Advertisement

Radiological Physics and Technology

, Volume 11, Issue 4, pp 365–374 | Cite as

Potentials of radiomics for cancer diagnosis and treatment in comparison with computer-aided diagnosis

  • Hidetaka Arimura
  • Mazen Soufi
  • Kenta Ninomiya
  • Hidemi Kamezawa
  • Masahiro Yamada
Article
  • 65 Downloads

Abstract

Computer-aided diagnosis (CAD) is a field that is essentially based on pattern recognition that improves the accuracy of a diagnosis made by a physician who takes into account the computer’s “opinion” derived from the quantitative analysis of radiological images. Radiomics is a field based on data science that massively and comprehensively analyzes a large number of medical images to extract a large number of phenotypic features reflecting disease traits, and explores the associations between the features and patients’ prognoses for precision medicine. According to the definitions for both, you may think that radiomics is not a paraphrase of CAD, but you may also think that these definitions are “image manipulation”. However, there are common and different features between the two fields. This review paper elaborates on these common and different features and introduces the potential of radiomics for cancer diagnosis and treatment by comparing it with CAD.

Keywords

Radiomics Computer-aided diagnosis Cancer diagnosis and treatment Precision medicine 

Notes

Acknowledgements

The researches described in this review paper were partially supported by the “Program for Supporting Educations and Researches on Mathematics and Data Science in Kyushu University”. The authors are grateful to all members of the Arimura laboratory (http://web.shs.kyushu-u.ac.jp/~arimura), whose comments made enormous contributions to the researches described in this review paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human rights

This article does not include studies using human subjects.

Animal rights

This article does not include others studies using animal models.

References

  1. 1.
    Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78(1):3–19.CrossRefGoogle Scholar
  2. 2.
    Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol. 2006;51(13):R5–27.CrossRefGoogle Scholar
  3. 3.
    Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Gr. 2007;31(4–5):198–211.CrossRefGoogle Scholar
  4. 4.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: Extracting more information from medical images using advanced feature analysis. J Cancer. 2012;48:441–6.Google Scholar
  5. 5.
    Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.  https://doi.org/10.1038/ncomms5006.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Arimura H, Soufi M. A review on radiomics for personalized medicine in cancer treatment. Med Imaging Technol. 2018;36(2):81–9.Google Scholar
  7. 7.
    Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.CrossRefGoogle Scholar
  8. 8.
    Itadani H, Mizuarai S, Kotani H. Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation. Curr Genom. 2008;9(5):349–60.CrossRefGoogle Scholar
  9. 9.
    Peeken JC, Nüsslin F, Combs SE. “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol. 2017;193(10):767–79.CrossRefGoogle Scholar
  10. 10.
    Arimura H, Tokunaga C, Yamashita Y, Kuwazuru K. Magnetic resonance image analysis for brain CAD systems with machine learning. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. pp. 258–96.CrossRefGoogle Scholar
  11. 11.
    Duda RO, Hart PE, Stork DG. Pattern classification, 2nd ed. New York: Wiley-Interscience; 2000.Google Scholar
  12. 12.
    Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM. Med Phys. 2008;35(12):5799–820.CrossRefGoogle Scholar
  13. 13.
    Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 2011;41(6):449–62.CrossRefGoogle Scholar
  14. 14.
    Muramatsu C. Overview on subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.CrossRefGoogle Scholar
  15. 15.
    Yamaguchi M. Computer-aided differentiation for pathology images. In: Arimura H, editor. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.Google Scholar
  16. 16.
    Arimura H. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.CrossRefGoogle Scholar
  17. 17.
    Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res. 2018;59:1–8 (Epub ahead of print).CrossRefGoogle Scholar
  18. 18.
    Hastie T, Tibshirani R, Friedman J. The elements of statistical learning -data mining, inference, and prediction, 2nd ed. New York: Springer; 2008.Google Scholar
  19. 19.
    Yoo BC, Kim KH, Woo SM, et al. Clinical multi-omics strategies for the effective cancer management. J Proteom. 2017;188:97–106.CrossRefGoogle Scholar
  20. 20.
    Suzuki K. Computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012.Google Scholar
  21. 21.
    Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, Goldgof DB, Hall LO, Korn R, Zhao B, Schwartz LH, Basu S, Eschrich S, Gatenby RA, Gillies RJ. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27(6):805–23.CrossRefGoogle Scholar
  22. 22.
    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefGoogle Scholar
  23. 23.
    Koo TK, Li MY. Erratum to “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research” [J Chiropr Med. 2016;15(2):155–63]. J Chiropr Med. 2017;16(4):346.CrossRefGoogle Scholar
  24. 24.
    Kleinbaum DG. Survival analysis: a self-learning text. New York: Springer; 1996.CrossRefGoogle Scholar
  25. 25.
    Cox DR. Regression models and life tables (with discussion). J R Stat Soc B. 1972;34(2):187–220.Google Scholar
  26. 26.
    Bak SH, Park H, Lee HY, et al. Imaging genotyping of functional signaling pathways in lung squamous cell carcinoma using a radiomics approach. Sci Rep. 2018;8(1):3284.  https://doi.org/10.1038/s41598-018-21706-1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–21.CrossRefGoogle Scholar
  28. 28.
    Galloway MM. Texture analysis using gray level run lengths. Comput Gr Image Process. 1975;4:172–79.CrossRefGoogle Scholar
  29. 29.
    Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19:1264–74.  https://doi.org/10.1109/21.44046.CrossRefGoogle Scholar
  30. 30.
    Thibault G. Texture indexes and gray level size zone matrix. Application to cell nuclei classification. In: Proc. Pattern Recognition and Information Processing. Minsk, Belarus, pp. 140–145, 2009.Google Scholar
  31. 31.
    Soufi M, Arimura H, Nakamoto T, et al. Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images. Phys Med Eur J Med Phys. 2018;46:32–44.Google Scholar
  32. 32.
    Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050–62.CrossRefGoogle Scholar
  33. 33.
    Soufi M, Arimura H, Nagami N. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Med Phys. 2018.  https://doi.org/10.1002/mp.13202 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  34. 34.
    Strang G, Nguyen T. Wavelets and filter banks. Wellesley: Wellesley-Cambridge; 1997.Google Scholar
  35. 35.
    Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal Mach Intell. 1989;11(7):674–93.CrossRefGoogle Scholar
  36. 36.
    Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comp Med Biol. 2007;37(4):486–98.CrossRefGoogle Scholar
  37. 37.
    Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7(1):1648.  https://doi.org/10.1038/s41598-017-01931-w.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.CrossRefGoogle Scholar
  39. 39.
    Ning Z, Luo J, Li Y, Han S, Feng Q, Xu Y, Chen W, Tao C, Zhang Y. Pattern classification for gastrointestinal stromal tumors by integration of radiomics and deep convolutional features. IEEE J Biomed Health Inform. 2018.  https://doi.org/10.1109/JBHI.2018.2841992 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  40. 40.
    Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, Tang Z, Dong D, Kong L, Wang M, Shi D, Tian J. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94.CrossRefGoogle Scholar
  41. 41.
    JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement (PDF). In: Joint committee for guides in metrology; 2008.Google Scholar
  42. 42.
    Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology. 2009;252(1):263–72.CrossRefGoogle Scholar
  43. 43.
    Zhao B, Schwartz LH, Kris MG. Data from RIDER_Lung CT. Cancer Imaging Arch. 2015.  https://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR.CrossRefGoogle Scholar
  44. 44.
    Kalpathy-Cramer J, Napel S, Goldgof D, Zhao B. Multi-site collection of lung CT data with nodule segmentations. TCIA. 2015.  https://doi.org/10.7937/K9/TCIA.2015.1BUVFJR7.CrossRefGoogle Scholar
  45. 45.
    Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016;2(4):430–7.CrossRefGoogle Scholar
  46. 46.
    Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater S. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology. 2018;288(2):407–15.CrossRefGoogle Scholar
  47. 47.
    Bologna M, Corino VDA, Montin E, Messina A, Calareso G, Greco FG, Sdao S, Mainardi LT. Assessment of stability and discrimination capacity of radiomic features on apparent diffusion coefficient images. J Digit Imaging. 2018.  https://doi.org/10.1007/s10278-018-0092-9 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  48. 48.
    Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRefGoogle Scholar
  49. 49.
    Jain AK, Duin RPW, Mao J. Statistical pattern recognition [Review]. IEEE Trans Pattern Anal Mach Intell. 2000;22:4–37.CrossRefGoogle Scholar
  50. 50.
    Chow S, Shao J, Wang H. Sample size calculations in clinical research. Chapman and Hall/CRC biostatistics series, 2nd ed. Boca Raton: CRC; 2008.Google Scholar
  51. 51.
    Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.  https://doi.org/10.1038/srep13087.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Leger S, Zwanenburg A, Pilz K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7(1):13206.  https://doi.org/10.1038/s41598-017-13448-3.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Abdollahi H, Mostafaei S, Cheraghi S, et al. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study. Phys Med Eur J Med Phys. 2018;45:192–7.  https://doi.org/10.1016/j.ejmp.2017.10.008.CrossRefGoogle Scholar
  54. 54.
    Shiradkar R, Ghose S, Jambor I, Taimen P, Ettala O, Purysko AS, Madabhushi A. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings. J Magn Reson Imaging. 2018.  https://doi.org/10.1002/jmri.26178 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  55. 55.
    Gabryś HS, Buettner F, Sterzing F, Hauswald H, Bangert M. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol. 2018;5:8–35.  https://doi.org/10.3389/fonc.2018.00035.CrossRefGoogle Scholar
  56. 56.
    Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Soft. 2011;39(5):1–13.  https://doi.org/10.18637/jss.v039.i05.CrossRefGoogle Scholar
  57. 57.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRefGoogle Scholar
  58. 58.
    Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.CrossRefGoogle Scholar
  59. 59.
    Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRefGoogle Scholar
  60. 60.
    Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018;98:126–46.CrossRefGoogle Scholar
  61. 61.
    Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.Google Scholar
  62. 62.
    Marcus G. Deep learning: a critical appraisal. 2018. arXiv:1801.00631v1.Google Scholar
  63. 63.
    Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Fu Y, Liu S. Predicting chemoradiotherapy response of nasopharyngeal carcinoma using texture features based on intravoxel incoherent motion diffusion-weighted imaging. Medicine (Baltimore). 2018;97(30):e11676.  https://doi.org/10.1097/MD.0000000000011676.CrossRefGoogle Scholar
  64. 64.
    Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–6.CrossRefGoogle Scholar
  65. 65.
    Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z, Cheng X. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2018.  https://doi.org/10.1007/s00330-018-5683-9.CrossRefPubMedGoogle Scholar
  66. 66.
    Crispin-Ortuzar M, Apte A, Grkovski M, Oh JH, Lee NY, Schöder H, Humm JL, Deasy JO. Predicting hypoxia status using a combination of contrast-enhanced computed tomography and [18F]-Fluorodeoxyglucose positron emission tomography radiomics features. Radiother Oncol. 2018;127(1):36–42.CrossRefGoogle Scholar
  67. 67.
    Larue RTHM, Klaassen R, Jochems A, Leijenaar RTH, Hulshof MCCM, van Berge Henegouwen MI, Schreurs WMJ, Sosef MN, van Elmpt W, van Laarhoven HWM, Lambin P. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Acta Oncol. 2018;1:1–7.  https://doi.org/10.1080/0284186X.2018.1486039 (Epub ahead of print).CrossRefGoogle Scholar
  68. 68.
    Hou Z, Li S, Ren W, Liu J, Yan J, Wan S. Radiomic analysis in T2W and SPAIR T2W MRI: predict treatment response to chemoradiotherapy in esophageal squamous cell carcinoma. J Thorac Dis. 2018;10(4):2256–67.CrossRefGoogle Scholar
  69. 69.
    Gangeh MJ, Hashim A, Giles A, Sannachi L, Czarnota GJ. Computer aided prognosis for cell death categorization and prediction in vivo using quantitative ultrasound and machine learning techniques. Med Phys. 2016;43(12):6439.CrossRefGoogle Scholar
  70. 70.
    Giannini V, Mazzetti S, Marmo A, Montemurro F, Regge D, Martincich L. A computer-aided diagnosis (CAD) scheme for pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features. Br J Radiol. 2017;90(1077):20170269.  https://doi.org/10.1259/bjr.20170269.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kai C, Uchiyama Y, Shiraishi J, Fujita H, Doi K. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiol Phys Technol. 2018.  https://doi.org/10.1007/s12194-018-0462-5.CrossRefPubMedGoogle Scholar
  72. 72.
    Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology. 2018;287(3):732–47.CrossRefGoogle Scholar
  73. 73.
    El Naqa I. Biomedical informatics and panomics for evidence-based radiation therapy. Wiley Interdiscip Rev Data Min Knowl Discov. 2014;4:327–40.CrossRefGoogle Scholar
  74. 74.
    Peeken JC, Bernhofer M, Wiestler B, Goldberg T, Cremers D, Rost B, Wilkens JJ, Combs SE, Nüsslin F. Radiomics in radiooncology—challenging the medical physicist. Phys Med Eur J Med Phys. 2018;48:27–36.Google Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2018

Authors and Affiliations

  • Hidetaka Arimura
    • 1
  • Mazen Soufi
    • 2
  • Kenta Ninomiya
    • 4
  • Hidemi Kamezawa
    • 3
  • Masahiro Yamada
    • 4
  1. 1.Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Division of Information ScienceNara Institute of Science and TechnologyIkomaJapan
  3. 3.Department of Radiological Technology, Faculty of Fukuoka Medical TechnologyTeikyo UniversityOmutaJapan
  4. 4.Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations