Advertisement

Journal on Multimodal User Interfaces

, Volume 13, Issue 2, pp 119–136 | Cite as

Investigating driver gaze behavior during lane changes using two visual cues: ambient light and focal icons

  • Andreas LöckenEmail author
  • Fei Yan
  • Wilko Heuten
  • Susanne Boll
Original Paper
  • 46 Downloads

Abstract

Currently, lane change decision aid systems primarily address foveal vision and thus compete for drivers’ attention with interfaces of other assistant systems. Also, alternative modalities such as acoustic perception (Mahapatra et al., in: 2008 International conference on advanced computer theory and engineering, pp 992–995. https://doi.org/10.1109/ICACTE.2008.165, 2008), tactile perception (Löcken et al., in: Adjunct proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15, pp 32–37. ACM, New York, NY, USA. https://doi.org/10.1145/2809730.2809758, 2015), or peripheral vision (Löcken et al., in: Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15, pp 204–211. ACM, New York, NY, USA. https://doi.org/10.1145/2799250.2799259, 2015), have been introduced for lane change support. We are especially interested in ambient light displays (ALD) addressing peripheral vision since they can adapt to the driver’s attention using changing saliency levels (Matthews et al., in: Proceedings of the 17th Annual ACM symposium on user interface software and technology, UIST ’04, pp 247–256, ACM. https://doi.org/10.1145/1029632.1029676, 2004). The primary objective of this research is to compare the effect of ambient light and focal icons on driving performance and gaze behavior. We conducted two driving simulator experiments. The first experiment evaluated an ambient light cue in a free driving scenario. The second one focused on the difference in gaze behavior between ALD and focal icons, called “abstract faces with emotional expressions” (FEE). The results show that drivers decide more often for safe gaps in rightward maneuvers with ambient light cues. Similarly, drivers decide to overtake more often when the gaps are big enough with both displays in the second experiment. Regarding gaze behavior, drivers looked longer towards the forward area, and less often and shorter into the side mirrors when using ALD. This effect supports the assumption that drivers perceive the ALD with peripheral vision. In contrast, FEE did not significantly affect the gaze behavior when compared to driving without assistance. These results help us to understand the effect of different modalities on performance and gaze behavior, and to explore appropriate modalities for lane change support.

Keywords

Lane change decision aid systems Peripheral vision Gaze behavior Driving performance 

Notes

References

  1. 1.
    BKatV—Verordnung über die Erteilung einer Verwarnung, Regelsätze für Geldbußen und die Anordnung eines Fahrverbotes wegen Ordnungswidrigkeiten im Straßenverkehr. http://www.gesetze-im-internet.de/bkatv_2013/BJNR049800013.html. Accessed 11 Oct 2018
  2. 2.
  3. 3.
    Bartels A, Meinecke MM, Steinmeyer S (2012) Lane change assistance. Springer, London, pp 729–757.  https://doi.org/10.1007/978-0-85729-085-4_28 Google Scholar
  4. 4.
    Beggiato M, Pereira M, Petzoldt T, Krems J (2015) Learning and development of trust, acceptance and the mental model of ACC. A longitudinal on-road study. Transp Res F Traffic Psychol Behav 35:75–84CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Breznitz S (2013) Cry wolf: the psychology of false alarms, 1st edn. Psychology Press, LondonCrossRefGoogle Scholar
  7. 7.
    Canty A, Ripley BD (2017) boot: Bootstrap R (S-Plus) Functions. R package version 1.3-20. https://cran.r-project.org/package=boot. Accessed 15 Mar 2019
  8. 8.
    Coughlin JF, Reimer B, Mehler B (2011) Monitoring, managing, and motivating driver safety and well-being. IEEE Pervasive Comput. 10(3):14–21CrossRefGoogle Scholar
  9. 9.
    Daimler AG (2010) New driver assistance systems: premiere: active blind spot assist and active lane keeping assist with brake actuation. https://media.daimler.com/marsMediaSite/en/instance/ko.xhtml?oid=9361813. Accessed 11 Oct 2018
  10. 10.
    Dziennus M, Kelsch J, Schieben A (2015) Ambient light based interaction concept for an integrative driver assistance system—a driving simulator study. In: Proceedings of the Human Factors and Ergonomics Society Europe chapter 2015 annual conferenceGoogle Scholar
  11. 11.
    Engström J, Markkula G (2007) Effects of visual and cognitive distraction on lane change test performance. In: Proceedings of the fourth international driving symposium on human factors in driver assessment, training and vehicle design, pp 199–205Google Scholar
  12. 12.
    Frischen A, Eastwood JD, Smilek D (2008) Visual search for faces with emotional expressions. Psychol Bull 134(5):662CrossRefGoogle Scholar
  13. 13.
    Fuhl W, Kübler T, Sippel K, Rosenstiel W, Kasneci E (2015) Excuse: robust pupil detection in real-world scenarios. In: Azzopardi G, Petkov N (eds) Computer analysis of images and patterns. Springer, Cham, pp 39–51CrossRefGoogle Scholar
  14. 14.
    Fuhl W, Santini TC, Kübler T, Kasneci E (2016) Else: ellipse selection for robust pupil detection in real-world environments. In: Proceedings of the ninth Biennial ACM symposium on eye tracking research and applications, ETRA ’16, pp 123–130. ACM, New York, NY, USA.  https://doi.org/10.1145/2857491.2857505
  15. 15.
    Habenicht S, Winner H, Bone S, Sasse F, Korzenietz P (2011) A maneuver-based lane change assistance system. In: Intelligent vehicles symposium (IV), 2011 IEEE, pp 375–380. IEEEGoogle Scholar
  16. 16.
    Hassel L, Hagen E (2006) Adaptation of an automotive dialogue system to users’ expertise and evaluation of the system. Lang Resour Eval 40(1):67–85CrossRefGoogle Scholar
  17. 17.
    Henning MH (2010) Preparation for lane change manoeuvres: behavioural indicators and underlying cognitive processes. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001033. Accessed 15 Mar 2019
  18. 18.
    Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2008) Implementing a class of permutation tests: the coin package. J Stat Softw 28(8):1–23CrossRefGoogle Scholar
  19. 19.
    ISO 15007-1:2014: Road vehicles - measurement of driver visual behaviour with respect to transport information and control systems - part 1: Definitions and parameters. Standard, International Organization for Standardization, Geneva, CH. https://www.iso.org/standard/56621.html
  20. 20.
    ISO 17387:2008 (2008) Intelligent transport systems—lane change decision aid systems (lcdas)—performance requirements and test procedures. Standard, International Organization for Standardization, Geneva, CHGoogle Scholar
  21. 21.
    Janarthanam S, Lemon O (2014) Adaptive generation in dialogue systems using dynamic user modeling. Comput Linguist 40(4):883–920CrossRefGoogle Scholar
  22. 22.
    Kollock P (1994) The emergence of exchange structures: an experimental study of uncertainty, commitment, and trust. Am J Sociol 100(2):313–345CrossRefGoogle Scholar
  23. 23.
    Laugwitz B, Held T, Schrepp M (2008) Construction and evaluation of a user experience questionnaire. In: Holzinger A (ed) HCI and usability for education and work. Springer, Berlin, pp 63–76.  https://doi.org/10.1007/978-3-540-89350-9_6 CrossRefGoogle Scholar
  24. 24.
    Lee JD, See KA (2004) Trust in automation: designing for appropriate reliance. Hum Factor 46(1):50–80CrossRefGoogle Scholar
  25. 25.
    Löcken A, Buhl H, Heuten W, Boll S (2015) Tacticar: towards supporting drivers during lane change using vibro-tactile patterns. In: Adjunct proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15, pp 32–37. ACM, New York, NY, USA.  https://doi.org/10.1145/2809730.2809758
  26. 26.
    Löcken A, Heuten W, Boll S (2015) Supporting lane change decisions with ambient light. In: Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15, pp 204–211. ACM, New York, NY, USA.  https://doi.org/10.1145/2799250.2799259
  27. 27.
    Löcken A, Heuten W, Boll S (2016) Enlightening drivers: a survey on in-vehicle light displays. In: Proceedings of the 8th international conference on automotive user interfaces and interactive vehicular applications, Automotive’UI 16, pp 97–104. ACM, New York, NY, USA.  https://doi.org/10.1145/3003715.3005416
  28. 28.
    Löcken A, Müller H, Heuten W, Boll S (2015) An experiment on ambient light patterns to support lane change decisions. In: Intelligent vehicles symposium (IV), 2015 IEEE, pp 505–510. IEEEGoogle Scholar
  29. 29.
    Mahapatra RP, Kumar KV, Khurana G, Mahajan R (2008) Ultra sonic sensor based blind spot accident prevention system. In: 2008 International conference on advanced computer theory and engineering, pp 992–995.  https://doi.org/10.1109/ICACTE.2008.165
  30. 30.
    Mankoff J, Dey AK, Hsieh G, Kientz J, Lederer S, Ames M (2003) Heuristic evaluation of ambient displays. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp 169–176. ACMGoogle Scholar
  31. 31.
    Matthews T, Dey AK, Mankoff J, Carter S, Rattenbury T (2004) A toolkit for managing user attention in peripheral displays. In: Proceedings of the 17th annual ACM symposium on user interface software and technology, UIST ’04, pp 247–256. ACM.  https://doi.org/10.1145/1029632.1029676
  32. 32.
    Matviienko A, Cobus V, Müller H, Fortmann J, Löcken A, Boll S, Rauschenberger M, Timmermann J, Trappe C, Heuten W (2015) Deriving design guidelines for ambient light systems. In: Proceedings of the 14th international conference on mobile and ubiquitous multimedia, MUM ’15, pp 267–277. ACM, New York, NY, USA.  https://doi.org/10.1145/2836041.2836069
  33. 33.
    Finnegan P, Green P (1990) The time to change lanes: a literature review. Technical report UMTRI-90-34, The University of Michigan, Transportation Research Institute, Ann Arbor, MI. https://pdfs.semanticscholar.org/10d9/72HrBbea82a6c8a42559b4568ab64e0bdc20e4d.pdfHrB. Accessed 11 Oct 2018
  34. 34.
    Petzoldt T, Krems JF (2014) How does a lower predictability of lane changes affect performance in the lane change task? Appl Ergon 45(4):1218–1224CrossRefGoogle Scholar
  35. 35.
    Pfromm M, Cieler S, Bruder R (2013) Driver assistance via optical information with spatial reference. In: 16th International IEEE conference on intelligent transportation systems (ITSC 2013), pp 2006–2011. IEEEGoogle Scholar
  36. 36.
    Piechulla W, Mayser C, Gehrke H, König W (2003) Reducing drivers’ mental workload by means of an adaptive man–machine interface. Transp Res F Traffic Psychol Behav 6(4):233–248CrossRefGoogle Scholar
  37. 37.
    R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 11 Oct 2018
  38. 38.
    Ruder M, Enkelmann W, Garnitz R (2002) Highway lane change assistant. In: Intelligent vehicle symposium, 2002. IEEE, vol 1, pp 240–244.  https://doi.org/10.1109/IVS.2002.1187958
  39. 39.
    J2396\_200007 (2000) Definitions and experimental measures related to the specification of driver visual behavior using video based techniques. SAE International, United States. https://doi.org/10.4271/J2396_200007
  40. 40.
    Salvucci DD, Liu A (2002) The time course of a lane change: driver control and eye-movement behavior. Transp Res F Traffic Psychol Behav 5(2):123–132.  https://doi.org/10.1016/S1369-8478(02)00011-6 CrossRefGoogle Scholar
  41. 41.
    Uchiyama Y, Kojima Si, Hongo T, Terashima R, Wakita T (2002) Voice information system adapted to driver’s mental workload. In: Proceedings of the human factors and ergonomics society annual meeting, vol 46, pp 1871–1875. SAGE Publications Sage CA, Los Angeles, CAGoogle Scholar
  42. 42.
    Ware C (2012) Information visualization perception for design: a volume in interactive technologies, 3rd edn. Elsevier, Amsterdam.  https://doi.org/10.1016/C2009-0-62432-6 Google Scholar
  43. 43.
    Wickens CD (2008) Multiple resources and mental workload. Hum Factors 50(3):449–455.  https://doi.org/10.1518/001872008X288394 CrossRefGoogle Scholar
  44. 44.
    Yan F, Eilers M, Baumann M, Luedtke A (2016) Development of a lane change assistance system adapting to driver’s uncertainty during decision-making. In: Proceedings of the 8th international conference on automotive user interfaces and interactive vehicular applications adjunct, pp 93–98. ACMGoogle Scholar
  45. 45.
    Yan F, Eilers M, Lüdtke A, Baumann M (2017) Building driver’s trust in lane change assistance systems by adapting to driver’s uncertainty states. In: 2017 IEEE intelligent vehicles symposium (IV), pp 529–534.  https://doi.org/10.1109/IVS.2017.7995772
  46. 46.
    Yan F, Eilers M, Lüdtke A, Baumann M (2016) Developing a model of driver’s uncertainty in lane change situations for trustworthy lane change decision aid systems. In: Intelligent vehicles symposium (IV), 2016 IEEE, pp 406–411. IEEEGoogle Scholar
  47. 47.
    Yan F, Weber L, Luedtke A (2015) Classifying driver’s uncertainty about the distance gap at lane changing for developing trustworthy assistance systems. In: Intelligent vehicles symposium (IV), 2015 IEEE, pp 1276–1281. IEEEGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technische Hochschule IngolstadtIngolstadtGermany
  2. 2.Ulm UniversityUlmGermany
  3. 3.OFFIS – Institute for Information TechnologyOldenburgGermany
  4. 4.University of OldenburgOldenburgGermany

Personalised recommendations