Resveratrol, an activator of SIRT1, improves ER stress by increasing clusterin expression in HepG2 cells

  • Jinmi Lee
  • Seok-Woo Hong
  • Hyemi Kwon
  • Se Eun Park
  • Eun-Jung Rhee
  • Cheol-Young Park
  • Ki-Won Oh
  • Sung-Woo Park
  • Won-Young LeeEmail author
Original Paper


Endoplasmic reticulum stress (ER stress) is involved in lipid metabolism and lipotoxicity and can lead to apoptosis. Resveratrol, a sirtuin 1 (SIRT1) agonist, prevents ER stress and improves ER stress-induced hepatic steatosis and cell death. Clusterin is a secreted chaperone and has roles in various physiological processes. However, changes in the expression of clusterin upon ER stress and the connection between SIRT1 and clusterin in protection against ER stress are not well known. In cells treated with tunicamycin, resveratrol increased the expression of clusterin mRNA and protein and the secreted clusterin protein level in conditioned medium. Resveratrol decreased protein expression of the ER stress markers, p-PERK, p-IRE1α, and CHOP, and increased the expression of the ER-associated degradation (ERAD) factors, SEL1L and HRD1, in tunicamycin-treated cells. However, no changes in the expression of these genes were observed in clusterin siRNA-transfected cells. Moreover, increased LAMP2 and LC3 expression and decreased Rubicon expression were observed in cells treated with resveratrol or secreted clusterin. These data suggest that SIRT1 activation by resveratrol attenuates ER stress by promoting protective processes such as ERAD and autophagy pathways and that these protective effects are mediated by clusterin.


Clusterin ER stress SIRT1 Chaperone Autophagy ERAD 



C/EBP homologous protein


Endoplasmic reticulum


Non-alcoholic fatty liver disease


ER-associated degradation


Heat shock protein


Inositol-requiring enzyme 1α


Protein kinase RNA-like endoplasmic reticulum kinase


Sarco(endo)plasmic reticulum Ca2+-ATPase 2b


Secretory clusterin


Silent mating-type information regulation 2 homolog 1


Unfolded protein response


Funding information

This study was supported by the Medical Research Funds from Kangbuk Samsung Hospital, and the National Research Foundation (NRF), which is funded by the Korean government (NRF-2018R1D1A1B07049689) ( The funders had no role in the study design, data collection, and analysis, the decision to publish, or preparation of the manuscript.

Supplementary material

12192_2019_1012_MOESM1_ESM.pdf (132 kb)
ESM 1 (PDF 132 kb)


  1. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506CrossRefGoogle Scholar
  2. Buzzard KA, Giaccia AJ, Killender M, Anderson RL (1998) Heat shock protein 72 modulates pathways of stress-induced apoptosis. J Biol Chem 273:17147–17153CrossRefGoogle Scholar
  3. Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, Horvath I, Mestril R, Watt MJ, Hooper PL, Kingwell BA, Vigh L, Hevener A, Febbraio MA (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105:1739–1744CrossRefGoogle Scholar
  4. Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo LD, Boothman DA (2005) Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280:14212–14221CrossRefGoogle Scholar
  5. Czaja MJ (2016) Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 61:1304–1313CrossRefGoogle Scholar
  6. de Silva HV, Stuart WD, Duvic CR, Wetterau JR, Ray MJ, Ferguson DG, Albers HW, Smith WR, Harmony JA (1990) A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins. J Biol Chem 265:13240–13247Google Scholar
  7. Di Naso FC, Porto RR, Fillmann HS, Maggioni L, Padoin AV, Ramos RJ, Mottin CC, Bittencourt A, Marroni NA, de Bittencourt PI, Jr. (2015) Obesity depresses the anti-inflammatory HSP70 pathway, contributing to NAFLD progression. Obesity 23:120–129Google Scholar
  8. Dokladny K, Myers OB, Moseley PL (2015) Heat shock response and autophagy--cooperation and control. Autophagy 11:200–213CrossRefGoogle Scholar
  9. Duncan RF (2005) Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J 272:5244–5256CrossRefGoogle Scholar
  10. Graham RM, Hernandez F, Puerta N, De Angulo G, Webster KA, Vanni S (2016) Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp Mol Med 48:e210CrossRefGoogle Scholar
  11. Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A (2010) HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 8:e1000410CrossRefGoogle Scholar
  12. Han J, Kaufman RJ (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57:1329–1338CrossRefGoogle Scholar
  13. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917CrossRefGoogle Scholar
  14. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881CrossRefGoogle Scholar
  15. Ingemann L, Kirkegaard T (2014) Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 55:2198–2210CrossRefGoogle Scholar
  16. Kelly KJ (2002) Stress response proteins and renal ischemia. Minerva urologica e nefrologica = The Italian journal of urology and nephrology 54:81–91Google Scholar
  17. Kriegenburg F, Ellgaard L, Hartmann-Petersen R (2012) Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation. FEBS J 279:532–542CrossRefGoogle Scholar
  18. Lee J, Ozcan U (2014) Unfolded protein response signaling and metabolic diseases. J Biol Chem 289:1203–1211CrossRefGoogle Scholar
  19. Leskov KS, Klokov DY, Li J, Kinsella TJ, Boothman DA (2003) Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 278:11590–11600CrossRefGoogle Scholar
  20. Mao Y, Yu F, Wang J, Guo C, Fan X (2016) Autophagy: a new target for nonalcoholic fatty liver disease therapy. Hepatic medicine : evidence and research 8:27–37Google Scholar
  21. Nikesitch N, Ling SC (2016) Molecular mechanisms in multiple myeloma drug resistance. J Clin Pathol 69:97–101CrossRefGoogle Scholar
  22. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231CrossRefGoogle Scholar
  23. Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–328CrossRefGoogle Scholar
  24. Poon S, Treweek TM, Wilson MR, Easterbrook-Smith SB, Carver JA (2002) Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513:259–266CrossRefGoogle Scholar
  25. Pucci S, Bonanno E, Pichiorri F, Angeloni C, Spagnoli LG (2004) Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene 23:2298–2304CrossRefGoogle Scholar
  26. Rocchi A, He C (2015) Emerging roles of autophagy in metabolism and metabolic disorders. Front Biol 10:154–164CrossRefGoogle Scholar
  27. Rohne P, Prochnow H, Wolf S, Renner B, Koch-Brandt C (2014) The chaperone activity of clusterin is dependent on glycosylation and redox environment. Cellular physiology and biochemistry : international journal of experimental cellular physiology. Biochem Pharmacol 34:1626–1639Google Scholar
  28. Salminen A, Kaarniranta K (2009) SIRT1: regulation of longevity via autophagy. Cell Signal 21:1356–1360CrossRefGoogle Scholar
  29. Schneider JL, Suh Y, Cuervo AM (2014) Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 20:417–432CrossRefGoogle Scholar
  30. Tabata Y, Takano K, Ito T, Iinuma M, Yoshimoto T, Miura H, Kitao Y, Ogawa S, Hori O (2007) Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am J Physiol Cell Physiol 293:C411–C418CrossRefGoogle Scholar
  31. Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, Shiode Y, Nakabori T, Saito Y, Hiramatsu N, Tabata K, Kawabata T, Hamasaki M, Eguchi H, Nagano H, Yoshimori T, Takehara T (2016) Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64:1994–2014CrossRefGoogle Scholar
  32. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, Zou Y, Margaritis LH, Boothman DA, Gonos ES (2009) Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 15:48–59CrossRefGoogle Scholar
  33. Wang H, Sun RQ, Zeng XY, Zhou X, Li S, Jo E, Molero JC, Ye JM (2015) Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology 156:169–181CrossRefGoogle Scholar
  34. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefGoogle Scholar
  35. Wang WR, Li TT, Jing T, Li YX, Yang XF, He YH, Zhang W, Lin R, Zhang JY (2017) SIRT1 regulates the inflammatory response of vascular adventitial fibroblasts through autophagy and related signaling pathway. Cellular physiology and biochemistry : international journal of experimental cellular physiology. Biochem Pharmacol 41:569–582Google Scholar
  36. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25:95–98CrossRefGoogle Scholar
  37. Xu L, Liu JH, Zhang J, Zhang N, Wang ZH (2015) Blockade of autophagy aggravates endoplasmic reticulum stress and improves Paclitaxel cytotoxicity in human cervical cancer cells. Cancer Res Treat 47:313–321CrossRefGoogle Scholar
  38. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915CrossRefGoogle Scholar
  39. Zhang Y, Chen ML, Zhou Y, Yi L, Gao YX, Ran L, Chen SH, Zhang T, Zhou X, Zou D, Wu B, Wu Y, Chang H, Zhu JD, Zhang QY, Mi MT (2015) Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Mol Nutr Food Res 59:1443–1457CrossRefGoogle Scholar
  40. Zhu X, Liu Q, Wang M, Liang M, Yang X, Xu X, Zou H, Qiu J (2011) Activation of Sirt1 by resveratrol inhibits TNF-alpha induced inflammation in fibroblasts. PLoS One 6:e27081CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  • Jinmi Lee
    • 1
  • Seok-Woo Hong
    • 1
  • Hyemi Kwon
    • 2
  • Se Eun Park
    • 2
  • Eun-Jung Rhee
    • 2
  • Cheol-Young Park
    • 2
  • Ki-Won Oh
    • 2
  • Sung-Woo Park
    • 2
  • Won-Young Lee
    • 2
    Email author
  1. 1.Institute of Medical Research, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea
  2. 2.Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations