Advertisement

Role of AccMGST1 in oxidative stress resistance in Apis cerana cerana

  • Wenchun Zhao
  • Yuzhen Chao
  • Ying Wang
  • Lijun Wang
  • Xinxin Wang
  • Han LiEmail author
  • Baohua XuEmail author
Original Paper

Abstract

As detoxification enzymes, proteins in the glutathione S-transferase (GST) superfamily are reported to participate in oxidative stress resistance. Nevertheless, microsomal GSTs (MGSTs), a unique subclass of the GST superfamily associated with membranes, are rarely studied in insects. Here, we isolated an MGST gene in Apis cerana cerana (AccMGST1) and verified its role in oxidative stress response. We found higher expression of AccMGST1 in protective or defensive tissue, that is, the epidermis, which indicated its role in stress resistance. Real-time quantitative PCR (qRT-PCR) analysis indicated that AccMGST1 was upregulated by oxidative stresses at the transcriptional level. In contrast, AccMGST1 expression was inhibited when the antioxidant vitamin C (VC) was fed to experimental bees. Through western blotting, we found that the protein level of AccMGST1 under oxidative stress corresponded to the transcript level. Disc diffusion and mixed-function oxidation (MFO) assays suggested that AccMGST1 can protect not only cells but also DNA against oxidative damage. Furthermore, we discovered that the expression patterns of known antioxidant genes were changed in A. cerana cerana after AccMGST1 was silenced by RNA interference (RNAi). Thus, we concluded that the gene AccMGST1 exerts a significant role in the antioxidant mechanism.

Keywords

Apis cerana cerana Oxidative stress AccMGST1 Expression RNA interference 

Abbreviations

BLAST

Basic local alignment search tool

CDNB

Xenobiotic substrate 1-chloro-2,4-dinitrobenzene

dsRNAs

Double-stranded RNAs

GST

Glutathione S-transferase

GSH

Glutathione

H2O2

Hydrogen peroxide

IPTG

Isopropyl-β-D-thiogalactopyranoside

LTA4

Leukotriene A4

LB

Lysogeny broth

MGST

Microsomal glutathione S-transferase

MFO

Mixed-function oxidation

MAPK

Mitogen-activated protein kinase

MAPEG

Membrane-associated proteins in eicosanoid and glutathione metabolism

NCBI

National Center for Biotechnology Information

O2

Superoxide anion

ORF

Open reading frame

OD

Optical density

POD

Peroxidases

qRT-PCR

Real-time quantitative PCR

RNAi

RNA interference

ROS

Reactive oxygen species

RNS

Reactive nitrogen species

SOD

Superoxide dismutase

SDS-PAGE

Sulfate-polyacrylamide gel electrophoresis

UV

Ultraviolet

VC

Vitamin C

Notes

Funding

This work was supported by the Shandong Provincial Natural Science Foundation (No. ZR201702150114); Funds of Shandong Province “Double Tops” Program (2016–2020); Shandong Province Agricultural Fine Varieties Breeding Projects (2017LZN006); and the earmarked fund for the China Agriculture Research System (No. CARS-44).

Supplementary material

12192_2019_1007_MOESM1_ESM.docx (17 kb)
Supplementary Table 1 (DOCX 16 kb)
12192_2019_1007_MOESM2_ESM.jpg (3 mb)
Supplementary Figure 1 (JPG 3023 kb)
12192_2019_1007_MOESM3_ESM.jpg (1.2 mb)
Supplementary Figure 2 (JPG 1259 kb)

References

  1. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334.  https://doi.org/10.1093/emboj/18.5.1321 CrossRefGoogle Scholar
  2. Ahmad S, Niegowski D, Wetterholm A, Haeggström JZ, Morgenstern R, Rinaldo-Matthis A (2013) Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps. Biochemistry-US. 52:1755–1764.  https://doi.org/10.1021/bi3014104 CrossRefGoogle Scholar
  3. Ahmad S, Thulasingam M, Palombo I, Daley DO, Johnson KA, Morgenstern R, Haeggströma JZ, Rinaldo-Matthis A (2015) Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity. BBA - Proteins Proteom 1854:1365–1371.  https://doi.org/10.1016/j.abb.2009.04.009 CrossRefGoogle Scholar
  4. Ålander J, Lengqvist J, Holm PJ, Svensson R, Gerbaux P, van denHeuvel RHH, Hebert H, Griffiths WJ, Armstrong RN, Morgensterna R (2009) Microsomal glutathione transferase 1 exhibits one-third-of-the-sites-reactivity towards glutathione. Arch Biochem Biophys 487(0):42–48.  https://doi.org/10.1016/j.abb.2009.04.009 CrossRefGoogle Scholar
  5. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565.  https://doi.org/10.1098/rsbl.2009.0986 CrossRefGoogle Scholar
  6. Burmeister C, Luersen K, Heinick A, Hussein A, Domagalski M, Walter RD, Liebau E (2007) Oxidative stress in caenorhabditis elegans: protective effects of the Omega class glutathione transferase (GSTO-1). FASEB J 22:343–354.  https://doi.org/10.1096/fj.06-7426com CrossRefGoogle Scholar
  7. Busenlehner L, Alander J, Jegerscohld C, Holm P, Bhakat P, Hebert H, Morgenstern R, Armstrong RN (2007) Location of substrate binding sites within the integral membrane protein microsomal glutathione transferase-1. Biochemistry-US. 46:2812–2822.  https://doi.org/10.1021/bi6023385 CrossRefGoogle Scholar
  8. Carballo M, Conde M, El Bekay R, Martín-Nieto J, Camacho MJ, Monteseirín J, Conde J, Bedoya FJ, Sobrino F (1999) Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J Biol Chem 274:17580–17586.  https://doi.org/10.1074/jbc.274.25.17580 CrossRefGoogle Scholar
  9. Chen X, Yao P, Chu X, Hao L, Guo X, Xu B (2015) Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress. Cell Stress Chaperon. 20:169–183.  https://doi.org/10.1007/s12192-014-0535-2 CrossRefGoogle Scholar
  10. Dejong JL, Morgenstern R, Jörnvall H, Depierre JW, Tu CP (1988) Gene expression of rat and human microsomal glutathione S-transferases. J Biol Chem 263:8430–8436.  https://doi.org/10.1016/0014-4827(88)90298-4 Google Scholar
  11. Diao Q, Sun L, Zheng H, Zeng Z, Wang S, Xu S, Zheng H, Chen Y, Shi Y, Wang Y, Meng F, Sang Q, Cao L, Liu F, Zhu Y, Li W, Li Z, Dai C, Yang M, Chen S, Chen R, Zhang S, Evans JD, Huang Q, Liu J, Hu F, Su S, Wu J (2018) Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Sci Rep-UK 8:822.  https://doi.org/10.1038/s41598-017-17338-6 CrossRefGoogle Scholar
  12. Ekström L, Lyrenäs L, Jakobsson PJ, Morgenstern R, Kelner MJ (2003) Basal expression of the human MAPEG members microsomal glutathione transferase 1 and prostaglandin e synthase genes is mediated by Sp1 and Sp3. BBA - Gene Struct Expr 1627:79–84.  https://doi.org/10.1016/S0167-4781(03)00077-0 CrossRefGoogle Scholar
  13. Elias-Neto M, Soares MP, Simões ZL, Hartfelder K, Bitondi MM (2010) Developmental characterization, function and regulation of a laccase2 encoding gene in the honey bee, Apis mellifera (hymenoptera, apinae). Insect Biochem Mol Biol 40(0):241–251.  https://doi.org/10.1016/j.ibmb.2010.02.004 CrossRefGoogle Scholar
  14. Falbo L, Sanzo MD, Romeo F, Epifanio G, Arcuri E, Sottile R, D’Alessandro BM, Quaresima B, Faniello CM, Costanzo FS (2009) Transcriptional regulation of H-ferritin gene after TSH stimulation: NF-Y7p300 complex. In: Febs Congress.  https://doi.org/10.1111/j.1742-4658.2009.07045.x Google Scholar
  15. Forrester SJ, Kikuch DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122:877–902.  https://doi.org/10.1161/CIRCRESAHA.117.311401 CrossRefGoogle Scholar
  16. Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821.  https://doi.org/10.1016/j.ecolecon.2008.06.014 CrossRefGoogle Scholar
  17. Grösch S, Kaina B (1999) Transcriptional activation of apurinic/apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB. Biochem Bioph Res Co 261:859–863.  https://doi.org/10.1006/bbrc.1999.1125 CrossRefGoogle Scholar
  18. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130Google Scholar
  19. He X, Liu XY (2011) Factors of Apis cerana decline in China. Apicult China 62:21–23Google Scholar
  20. Hebert H, Jegerschöld C (2007) The structure of membrane associated proteins in eicosanoid and glutathione metabolism as determined by electron crystallography. Curr Opin Struc Biol 17:396–404.  https://doi.org/10.1016/j.sbi.2007.07.008 CrossRefGoogle Scholar
  21. Hepburn HR, Radloff SE (2011) Honeybees of Asia. Springer, Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-16422-4 CrossRefGoogle Scholar
  22. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 320:661–664CrossRefGoogle Scholar
  23. Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B (2010) Common structural features of MAPEG - a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 8:689–692.  https://doi.org/10.1110/ps.8.3.689 CrossRefGoogle Scholar
  24. Jia H, Sun R, Shi W, Yan Y, Li H, Guo X, Xu B (2014) Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana, and its role in oxidative stress. J Insect Physiol 60:68–79.  https://doi.org/10.1016/j.jinsphys.2013.11.004 CrossRefGoogle Scholar
  25. Jia H, Ma M, Zhai N, Liu Z, Wang H, Guo X, Xu B (2017) Roles of a mitochondrial ACCSCO2 gene from Apis cerana cerana in oxidative stress responses. J Inorg Biochem 175:9–19.  https://doi.org/10.1016/j.jinorgbio.2017.06.015 CrossRefGoogle Scholar
  26. Jordan KW, Craver KL, Magwire MM, Cubilla CE, Mackay TF, Anholt RR (2012) Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster. PLoS ONE 7:e38722.  https://doi.org/10.1371/journal.pone.0038722 CrossRefGoogle Scholar
  27. Kim JE, Jin DH, Lee SD, Hong SW, Shin JS, Lee SK, Jung DJ, Kang JS, Lee WJ (2008) Vitamin C inhibits p53-induced replicative senescence through suppression of ROS production and p38 MAPK activity. Int J Mol Med 22:651–655.  https://doi.org/10.3892/ijmm_00000068 Google Scholar
  28. Kottuparambil S, Shin W, Brown MT, Han T (2012) UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, euglena agilis carter. Aquatic Toxicol:122–123(none).  https://doi.org/10.1016/j.aquatox.2012.06.002
  29. Kowalski A (2014) Downregulation of microsomal glutathione-S-transferase 1 modulates protective mechanisms in differentiated PC12 cells. J Physiol Biochem 70:375–383.  https://doi.org/10.1007/s13105-014-0312-9 CrossRefGoogle Scholar
  30. Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Simon T, John T (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. PNAS 101:7663–7668.  https://doi.org/10.1073/pnas.0307605101 CrossRefGoogle Scholar
  31. Li AH, Na BK, Kong Y, Cho SH, Zhao QP, Kim TP (2005) Molecular cloning and characterization of copper/zinc-superoxide dismutase of Paragonimus westermani. J Parasitol 91:293–299.  https://doi.org/10.1645/GE-349R CrossRefGoogle Scholar
  32. Li N, Muthusamy S, Liang R, Sarojini H, Wang E (2011) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132:75–85.  https://doi.org/10.1016/j.mad.2010.12.004 CrossRefGoogle Scholar
  33. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicol 101(0):13–30.  https://doi.org/10.1016/j.aquatox.2010.10.006 CrossRefGoogle Scholar
  34. Maeda A, Crabb JW, Palczewski K (2008) Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry-US. 44:480–489.  https://doi.org/10.1021/bi048016f CrossRefGoogle Scholar
  35. Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401.  https://doi.org/10.1016/S0076-6879(05)01001-3
  36. Mapp CE, Fryer AA, Marzo ND, Pozzato V, Padoan M, Boschetto P, Strange RC, Hemmingsen A, Spiteri MA (2002) Glutathione s-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J Allergy Clin Immun 109:867–872.  https://doi.org/10.1067/mai.2002.123234 CrossRefGoogle Scholar
  37. Marionnet C, Bernerd F, Dumas A, Verrecchia F, Mollier K, Compan D, Bernard B, Lahfa M, Leclaire J, Medaisko C, Mehul B, Seité S, Mauviel A, Dubertret L (2003) Modulation of gene expression induced in human epidermis by environmental stress in vivo. J Invest Dermatol 121:1447–1458.  https://doi.org/10.1111/j.1523-1747.2003.12629.x CrossRefGoogle Scholar
  38. Meng F, Zhang Y, Liu F, Guo X, Xu B (1984) Characterization and mutational analysis of Omega-Class GST (GSTO1) from Apis cerana cerana, a gene involved in response to oxidative stress. PLoS One 108:927–939.  https://doi.org/10.1371/journal.pone.0093100 Google Scholar
  39. Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL (2009) Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. J Insect Physio 55:588–592.  https://doi.org/10.1016/j.jinsphys.2009.03.003 CrossRefGoogle Scholar
  40. Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus, (Spix and Agassiz, 1829). Ecotoxicology. 19:105–123.  https://doi.org/10.1007/s10646-009-0395-1 CrossRefGoogle Scholar
  41. Morgenstern R, Guthenberg C, Depierre JW (1996) Microsomal glutathione s-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C. Eur J Biochem 128:223–227.  https://doi.org/10.1111/j.1432-1033.1982.tb06958.x Google Scholar
  42. Morgenstern R, Zhang J, Johansson K (2011) Microsomal glutathione transferase 1: mechanism and functional roles. Drug Metab Rev 43:7–306.  https://doi.org/10.3109/03602532.2011.558511 CrossRefGoogle Scholar
  43. Mosialou E, Piemonte F, Andersson C, Vos RM, van Bladeren PJ, Morgenstern R (1995) Microsomal glutathione transferase: lipid-derived substrates and lipid dependence. Arch Biochem Biophys 320:210–216.  https://doi.org/10.1016/0003-9861(95)90002-0 CrossRefGoogle Scholar
  44. Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione s-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101(0):550–560.  https://doi.org/10.1016/j.aquatox.2010.12.006 CrossRefGoogle Scholar
  45. Ni CX, Zhang LY, Li HL, Shang HW (2013) Molecular cloning and expression profiles analysis of chemosensory protein genes family in the Chinese honeybee (Apis cerana cerana). Sci Agric Sin 46:1706–1715.  https://doi.org/10.3864/j.issn.0578-1752.2013.08.021 Google Scholar
  46. Park EJ, Park K (2007) Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicol in Vitro 21(0):789–794.  https://doi.org/10.1016/j.tiv.2007.01.019 CrossRefGoogle Scholar
  47. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(0):345–353.  https://doi.org/10.1016/j.tree.2010.01.007 CrossRefGoogle Scholar
  48. Rahantaniaina MS, Li S, Chatelinnocenti G, Tuzet A, Mhamdi A, Vanacker H, Noctor G (2018) Glutathione oxidation in response to intracellular H2O2: key but overlapping roles for dehydroascorbate reductases. Plant Signal Behav 12:e1356531.  https://doi.org/10.1080/15592324.2017.1356531 CrossRefGoogle Scholar
  49. Ray P, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990.  https://doi.org/10.1016/j.cellsig.2012.01.008 CrossRefGoogle Scholar
  50. Scoggan KA, Jakobsson PJ, Ford-Hutchinson AW (1997) Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. J Biol Chem 272:10182–10187.  https://doi.org/10.1074/jbc.272.15.10182 CrossRefGoogle Scholar
  51. Segura-Aguilar J, Paris I (2014) Mechanisms of dopamine oxidation and Parkinson’s disease. Springer, New York.  https://doi.org/10.1007/978-1-4614-5836-4_16 Google Scholar
  52. Siritantikorn A, Johansson K, Åhlen K, Rinaldi R, Suthiphongchai T, Wilairat P, Morgenstern R (2007) Protection of cells from oxidative stress by microsomal glutathione transferase 1. Biochem Bioph Res Co. 355(0):592–596.  https://doi.org/10.1016/j.bbrc.2007.02.018 CrossRefGoogle Scholar
  53. Tang AH, Tu CP (1994) Biochemical characterization of drosophila glutathione S-transferases D1 and D21. J Biol Chem 269:27876–27884.  https://doi.org/10.1016/0304-4165(94)90058-2 Google Scholar
  54. Townsend DM, Tew KD (2003) The role of glutathione-s-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375.  https://doi.org/10.1038/sj.onc.1206940
  55. Tsuda M, Ootaka R, Ohkura C, Kishita Y, Seong KH, Matsuo T, Aigaki T (2010) Loss of Trx-2 enhances oxidative stress-dependent phenotypes in Drosophila. FEBS Lett 584:3398–3401.  https://doi.org/10.1016/j.febslet.2010.06.034 CrossRefGoogle Scholar
  56. Uno Y, Murayama N, Kunori M, Yamazaki H (2013) Characterization of microsomal glutathione S-transferases MGST1, MGST2, and MGST3 in cynomolgus macaque. Drug Metab Dispos 41:1621–1625.  https://doi.org/10.1124/dmd.113.052977 CrossRefGoogle Scholar
  57. Wang W, Hu C, Li XR, Wang XQ, Yang XQ (2019) CpGSTd3 is a lambda-Cyhalothrin metabolizing glutathione S-transferase from Cydia pomonella (L.). J Agric Food Chem 67:1165–1172.  https://doi.org/10.1021/acs.jafc.8b05432 CrossRefGoogle Scholar
  58. Yan H, Jia H, Wang X, Gao H, Guo X, Xu B (2013a) Identification and characterization of an Apis cerana cerana Delta class glutathione s-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften 100:153–163.  https://doi.org/10.1007/s00114-012-1006-1 CrossRefGoogle Scholar
  59. Yan H, Jia H, Gao H, Guo X, Xu B (2013b) Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana. Cell Stress Chaperon 18:415–426.  https://doi.org/10.1007/s12192-012-0394-7 CrossRefGoogle Scholar
  60. Yan Y, Zhang Y, Huaxia Y, Wang X, Yao P, Guo X, Xu B (2014) Identification and characterisation of a novel 1-cys thioredoxin peroxidase gene (AccTpx5) from Apis cerana cerana. Comp Biochem Phys B 172-173:39–48.  https://doi.org/10.1016/j.cbpb.2014.04.004 CrossRefGoogle Scholar
  61. Yao P, Lu W, Meng F, Wang X, Xu B, Guo X (2013) Molecular cloning, expression and oxidative stress response of a mitochondrial thioredoxin peroxidase gene (AccTpx-3) from Apis cerana cerana. J Insect Physiol 59:273–282.  https://doi.org/10.1016/j.jinsphys.2012.11.005 CrossRefGoogle Scholar
  62. Yin Z, Ivanov VN, Habelhah H, Tew K, Ronai Z (2000) Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res 60:4053–4057.  https://doi.org/10.1097/00002820-200008000-00010 Google Scholar
  63. Zhai N, Jia H, Ma M, Chao Y, Guo X, Li H (2018) Characteristics of AccSTIP1 in Apis cerana cerana and its role during oxidative stress responses. Cell Stress Chaperon 23:1–12.  https://doi.org/10.1007/s12192-018-0920-3 CrossRefGoogle Scholar
  64. Zhang P, Yi LH, Meng GY, Zhang HY, Sun HH, Cui LQ (2017) Apelin-13 attenuates cisplatin-induced cardiotoxicity through inhibition of ROS-mediated DNA damage and regulation of MAPKs and AKT pathways. Free Radic Res 51:449–459.  https://doi.org/10.1080/10715762.2017.1313414 CrossRefGoogle Scholar
  65. Zhao H, Gao P, Du H, Ma W, Tian S, Jiang Y (2014) Molecular characterization and differential expression of two duplicated odorant receptor genes, AcerOr1 and AcerOr3, in Apis cerana cerana. J Genet 93:53–61.  https://doi.org/10.1007/s12041-014-0332-9 CrossRefGoogle Scholar
  66. Zhao G, Wang C, Wang H, Gao L, Liu Z, Xu B, Guo X (2017) Characterization of the CDK5 gene in Apis cerana cerana, (AccCDK5) and a preliminary identification of its activator gene, AccCDK5r1. Cell Stress Chaperon. 23:1–16.  https://doi.org/10.1007/s12192-017-0820-y Google Scholar
  67. Zhu M, Zhang W, Liu F, Chen X, Li H, Xu B (2016) Characterization of an Apis cerana cerana cytochrome p450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene. 584:120–128CrossRefGoogle Scholar
  68. Zou J, Crews F (2006) CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:383–403.  https://doi.org/10.1007/s10571-006-9045-9 CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianPeople’s Republic of China
  2. 2.College of Animal Science and TechnologyShandong Agricultural UniversityTaianPeople’s Republic of China

Personalised recommendations