Advertisement

Cell Stress and Chaperones

, Volume 23, Issue 4, pp 749–761 | Cite as

NR4A1 contributes to high-fat associated endothelial dysfunction by promoting CaMKII-Parkin-mitophagy pathways

  • Pei Li
  • Yuzhi Bai
  • Xia Zhao
  • Tian Tian
  • Liying Tang
  • Jing Ru
  • Yun An
  • Jing Wang
Original Paper

Abstract

Parkin-related mitophagy is vital for endothelial cell viability and the development of atherosclerosis, although the upstream regulatory factor underlying Parkin-mediated mitophagy in endothelial apoptosis and atherosclerosis progression remains unknown. In the present study, we demonstrated that nuclear receptor subfamily 4 group A member 1 (NR4A1) is actually expressed in aortic endothelial cells (AECs) under oxidized low-density lipoprotein (ox-LDL) treatment in vitro or isolated from high-fat treated mice in vivo. Higher NR4A1 levels were associated with AEC apoptosis, mitochondrial dysfunction, and energy disorder. At the molecular level, ox-LDL stimulation increased NR4A1 expression, which evoked Parkin-mediated mitophagy. Excessive mitophagy overtly consumed mitochondrial mass, leading to an energy shortage and mitochondrial dysfunction. However, loss of NR4A1 protected AECs against ox-LDL induced apoptosis by inhibiting excessive mitophagy. Furthermore, we also identified that NR4A1 regulated Parkin activation via post-transcriptional modification by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Activated CaMKII via NR4A1 induced the phosphorylated activation of Parkin. In summary, our data support the role of NR4A1/CaMKII/Parkin/mitophagy in AEC apoptosis and atherosclerosis formation and provide new insights into treating atherosclerosis with respect to endothelial viability, mitophagy, and NR4A1.

Keywords

NR4A1 CaMKII Atherosclerosis Mitophagy Endothelial apoptosis 

Notes

Authors’ contributions

PL, YZB, and JW were involved in conception and design, performance of experiments, data analysis and interpretation, and manuscript writing; XZ, LYT, and TT were involved in data analysis and interpretation; JR, YA, and JW were involved in conception and design, data analysis and interpretation, financial support, and final approval of manuscript.

Funding

This study was supported by grants from National Natural Science Foundation of China (Number 81501195). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Competing interests

The authors have declared that they have no conflicts of interest.

References

  1. Abdou HS, Villeneuve G, Tremblay JJ (2013) The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology 154:511–520.  https://doi.org/10.1210/en.2012-1767 CrossRefPubMedGoogle Scholar
  2. Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017) Autophagy and mitophagy in cardiovascular disease. Circ Res 120:1812–1824.  https://doi.org/10.1161/CIRCRESAHA.117.311082 CrossRefPubMedGoogle Scholar
  3. Caja S, Enriquez JA (2017) Mitochondria in endothelial cells: sensors and integrators of environmental cues. Redox Biol 12:821–827.  https://doi.org/10.1016/j.redox.2017.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Camare C, Pucelle M, Negre-Salvayre A, Salvayre R (2017) Angiogenesis in the atherosclerotic plaque. Redox Biol 12:18–34.  https://doi.org/10.1016/j.redox.2017.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chatterjee S, Bedja D, Mishra S, Amuzie C, Avolio A, Kass DA, Berkowitz D, Renehan M (2014) Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E−/− mice and rabbits fed a high-fat and -cholesterol diet. Circulation 129:2403–2413.  https://doi.org/10.1161/CIRCULATIONAHA.113.007559 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chattopadhyay R, Raghavan S, Rao GN (2017) Resolvin D1 via prevention of ROS-mediated SHP2 inactivation protects endothelial adherens junction integrity and barrier function. Redox Biol 12:438–455.  https://doi.org/10.1016/j.redox.2017.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen HH, Chen YT, Yang CC, Chen KH, Sung PH, Chiang HJ, Chen CH, Chua S, Chung SY, Chen YL, Huang TH, Kao GS, Chen SY, Lee MS, Yip HK (2016a) Melatonin pretreatment enhances the therapeutic effects of exogenous mitochondria against hepatic ischemia-reperfusion injury in rats through suppression of mitochondrial permeability transition. J Pineal Res 61:52–68.  https://doi.org/10.1111/jpi.12326 CrossRefPubMedGoogle Scholar
  8. Chen X, Pang S, Lin J, Xia J, Wang Y (2016b) Allicin prevents oxidized low-density lipoprotein-induced endothelial cell injury by inhibiting apoptosis and oxidative stress pathway. BMC Complement Altern Med 16:133.  https://doi.org/10.1186/s12906-016-1126-9 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen J, Wang YX, Dong MQ, Zhang B, Luo Y, Niu W, Li ZC (2017) Reoxygenation reverses hypoxic pulmonary arterial remodeling by inducing smooth muscle cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction. J Am Heart Assoc 6:e005602.  https://doi.org/10.1161/JAHA.117.005602 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corrocher FA, Bueno de Paiva L, ASS D, Ferro KP, Silveira LR, de Lima TI, Olalla Saad ST, Lazarini M (2017) Reduced expression of NR4A1 activates glycolytic pathway in acute promyelocytic leukemia cells. Leuk Lymphoma:1–4.  https://doi.org/10.1080/10428194.2017.1387900
  11. Das N, Mandala A, Naaz S, Giri S, Jain M, Bandyopadhyay D, Reiter RJ, Roy SS (2017) Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res 62.  https://doi.org/10.1111/jpi.12404
  12. Foteinos G, Afzal AR, Mandal K, Jahangiri M, Xu Q (2005) Anti-heat shock protein 60 autoantibodies induce atherosclerosis in apolipoprotein E-deficient mice via endothelial damage. Circulation 112:1206–1213.  https://doi.org/10.1161/CIRCULATIONAHA.105.547414 CrossRefPubMedGoogle Scholar
  13. Gao Y, Xiao X, Zhang C, Yu W, Guo W, Zhang Z, Li Z, Feng X, Hao J, Zhang K, Xiao B, Chen M, Huang W, Xiong S, Wu X, Deng W (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-kappaB/iNOS signaling pathways. J Pineal Res 62.  https://doi.org/10.1111/jpi.12380
  14. Griffiths HR, Gao D, Pararasa C (2017) Redox regulation in metabolic programming and inflammation. Redox Biol 12:50–57.  https://doi.org/10.1016/j.redox.2017.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17.  https://doi.org/10.1016/j.redox.2017.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hamilton JA, Hasturk H, Kantarci A, Serhan CN, Van Dyke T (2017) Atherosclerosis, periodontal disease, and treatment with resolvins. Curr Atheroscler Rep 19:57.  https://doi.org/10.1007/s11883-017-0696-4 CrossRefPubMedGoogle Scholar
  17. Han L, Wang H, Li L, Li X, Ge J, Reiter RJ, Wang Q (2017) Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J Pineal Res 63.  https://doi.org/10.1111/jpi.12431
  18. Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, Ye X, Cai L, Zhang F, Chen H, Jiang F, Fang H, Yang S, Liu J, Diaz-Meco MT, Su Y, Zhou H, Moscat J, Lin X, Zhang XK (2017a) Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell 66(141–153):e146.  https://doi.org/10.1016/j.molcel.2017.03.008 CrossRefGoogle Scholar
  19. Hu SY, Zhang Y, Zhu PJ, Zhou H, Chen YD (2017b) Liraglutide directly protects cardiomyocytes against reperfusion injury possibly via modulation of intracellular calcium homeostasis. J Geriatr Cardiol 14:57–66.  https://doi.org/10.11909/j.issn.1671-5411.2017.01.008 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Iggena D, Winter Y, Steiner B (2017) Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice. J Pineal Res 62.  https://doi.org/10.1111/jpi.12397
  21. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587.  https://doi.org/10.1016/j.redox.2017.11.004 CrossRefPubMedGoogle Scholar
  22. Kalyanaraman B (2017) Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 12:833–842.  https://doi.org/10.1016/j.redox.2017.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kozlov AV, Lancaster JR Jr, Meszaros AT, Weidinger A (2017) Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 13:170–181.  https://doi.org/10.1016/j.redox.2017.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62.  https://doi.org/10.1111/jpi.12392
  25. Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ (2017) BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 13:426–443.  https://doi.org/10.1016/j.redox.2017.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lin S, Hoffmann K, Gao C, Petrulionis M, Herr I, Schemmer P (2017) Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J Pineal Res 62.  https://doi.org/10.1111/jpi.12398
  27. Liu J, Wang GH, Duan YH, Dai Y, Bao Y, Hu M, Zhou YQ, Li M, Jiang F, Zhou H, Yao XS, Zhang XK (2017a) Modulation of the Nur77-Bcl-2 apoptotic pathway by p38alpha MAPK. Oncotarget 8:69731–69745.  https://doi.org/10.18632/oncotarget.19227 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Liu Z, Gan L, Luo D, Sun C (2017b) Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue. J Pineal Res 62.  https://doi.org/10.1111/jpi.12383
  29. McMorrow JP, Murphy EP (2011) Inflammation: a role for NR4A orphan nuclear receptors? Biochem Soc Trans 39:688–693.  https://doi.org/10.1042/BST0390688 CrossRefPubMedGoogle Scholar
  30. Medzikovic L, Schumacher CA, Verkerk AO, van Deel ED, Wolswinkel R, van der Made I, Bleeker N, Cakici D, van den Hoogenhof MMG, Meggouh F, Creemers EE, Remme CA, Baartscheer A, de Winter RJ, de Vries CJM, Arkenbout EK, de Waard V (2015) Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling. Sci Rep 5:15404.  https://doi.org/10.1038/srep15404 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Min AK, Bae KH, Jung YA, Choi YK, Kim MJ, Kim JH, Jeon JH, Kim JG, Lee IK, Park KG (2014) Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression. Endocrinology 155:2924–2931.  https://doi.org/10.1210/en.2013-1758 CrossRefPubMedGoogle Scholar
  32. Oanh NTK, Park YY, Cho H (2017) Mitochondria elongation is mediated through SIRT1-mediated MFN1 stabilization. Cell Signal 38:67–75.  https://doi.org/10.1016/j.cellsig.2017.06.019 CrossRefPubMedGoogle Scholar
  33. Okamoto T, Suzuki K (2017) The role of gap junction-mediated endothelial cell-cell interaction in the crosstalk between inflammation and blood coagulation. Int J Mol Sci 18.  https://doi.org/10.3390/ijms18112254
  34. Pawlak A, Strzadala L, Kalas W (2015) Non-genomic effects of the NR4A1/Nur77/TR3/NGFIB orphan nuclear receptor. Steroids 95:1–6.  https://doi.org/10.1016/j.steroids.2014.12.020 CrossRefPubMedGoogle Scholar
  35. Ranhotra HS (2015) The NR4A orphan nuclear receptors: mediators in metabolism and diseases. J Recept Signal Transduct Res 35:184–188.  https://doi.org/10.3109/10799893.2014.948555 CrossRefPubMedGoogle Scholar
  36. Sato A, Arimura Y, Manago Y, Nishikawa K, Aoki K, Wada E, Suzuki Y, Osaka H, Setsuie R, Sakurai M, Amano T, Aoki S, Wada K, Noda M (2006) Parkin potentiates ATP-induced currents due to activation of P2X receptors in PC12 cells. J Cell Physiol 209:172–182.  https://doi.org/10.1002/jcp.20719 CrossRefPubMedGoogle Scholar
  37. Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H (2018) Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 14:59–71.  https://doi.org/10.1016/j.redox.2017.08.013 CrossRefPubMedGoogle Scholar
  38. Sigala F, Efentakis P, Karageorgiadi D, Filis K, Zampas P, Iliodromitis EK, Zografos G, Papapetropoulos A, Andreadou I (2017) Reciprocal regulation of eNOS, H2S and CO-synthesizing enzymes in human atheroma: correlation with plaque stability and effects of simvastatin. Redox Biol 12:70–81.  https://doi.org/10.1016/j.redox.2017.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tallman KA, Kim HH, Korade Z, Genaro-Mattos TC, Wages PA, Liu W, Porter NA (2017) Probes for protein adduction in cholesterol biosynthesis disorders: Alkynyl lanosterol as a viable sterol precursor. Redox Biol 12:182–190.  https://doi.org/10.1016/j.redox.2017.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vendrov AE, Stevenson MD, Alahari S, Pan H, Wickline SA, Madamanchi NR, Runge MS (2017) Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice. J Am Heart Assoc 6:e006775.  https://doi.org/10.1161/JAHA.117.006775 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang Z, Ni L, Wang J, Lu C, Ren M, Han W, Liu C (2016) The protective effect of melatonin on smoke-induced vascular injury in rats and humans: a randomized controlled trial. J Pineal Res 60:217–227.  https://doi.org/10.1111/jpi.12305 CrossRefPubMedGoogle Scholar
  42. Wang L, Feng C, Zheng X, Guo Y, Zhou F, Shan D, Liu X, Kong J (2017a) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63.  https://doi.org/10.1111/jpi.12429
  43. Wang N, Liu H, Li X, Zhang Q, Chen M, Jin Y, Deng X (2017b) Activities of MSCs derived from transgenic mice seeded on ADM scaffolds in wound healing and assessment by advanced optical techniques. Cell Physiol Biochem 42:623–639.  https://doi.org/10.1159/000477872 CrossRefPubMedGoogle Scholar
  44. Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, Wang J, Qin Y, Liu Y, Tang C, He L, Greka A, Zhou Z, Liu F, Dong Z, Sun L (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol 11:297–311.  https://doi.org/10.1016/j.redox.2016.12.022 CrossRefPubMedGoogle Scholar
  45. Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, Shen HM, Xia D (2017) Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol 12:198–207.  https://doi.org/10.1016/j.redox.2017.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Xue Z, Yuan W, Li J, Zhou H, Xu L, Weng J, Li X, Zhang X, Wang Z, Yan J (2017) Cyclophilin A mediates the ox-LDL-induced activation and apoptosis of macrophages via autophagy. Int J Cardiol 230:142–148.  https://doi.org/10.1016/j.ijcard.2016.12.042 CrossRefPubMedGoogle Scholar
  47. Yin H, Zhang S, Sun Y, Li S, Ning Y, Dong Y, Shang Y, Bai C (2017) MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death Dis 8:e2998.  https://doi.org/10.1038/cddis.2017.357 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yu S, Wang X, Geng P, Tang X, Xiang L, Lu X, Li J, Ruan Z, Chen J, Xie G, Wang Z, Ou J, Peng Y, Luo X, Zhang X, Dong Y, Pang X, Miao H, Chen H, Liang H (2017) Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J Pineal Res 63.  https://doi.org/10.1111/jpi.12405
  49. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, Gao E, Yang Y, Liang H, Jin Z, Yu S (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63.  https://doi.org/10.1111/jpi.12419
  50. Zhang Y, Zhou H, Wu W, Shi C, Hu S, Yin T, Ma Q, Han T, Zhang Y, Tian F, Chen Y (2016) Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med 95:278–292.  https://doi.org/10.1016/j.freeradbiomed.2016.03.035 CrossRefPubMedGoogle Scholar
  51. Zhao Y, Bruemmer D (2010) NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol 30:1535–1541.  https://doi.org/10.1161/ATVBAHA.109.191163 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhao W, Feng H, Sun W, Liu K, Lu JJ, Chen X (2017) Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: roles of NOX4 and mitochondrion. Redox Biol 11:524–534.  https://doi.org/10.1016/j.redox.2016.12.036 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhou H, Yang J, Xin T, Li D, Guo J, Hu S, Zhou S, Zhang T, Zhang Y, Han T, Chen Y (2014) Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways. Free Radic Biol Med 77:363–375.  https://doi.org/10.1016/j.freeradbiomed.2014.09.033 CrossRefPubMedGoogle Scholar
  54. Zhou H, Li D, Shi C, Xin T, Yang J, Zhou Y, Hu S, Tian F, Wang J, Chen Y (2015a) Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep 5:12898.  https://doi.org/10.1038/srep12898 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhou H et al (2015b) Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1alpha/CXC chemokine receptor 4 pathway. Mol Med Rep 11:4063–4072.  https://doi.org/10.3892/mmr.2015.3243 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y (2017a) Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc 6:e005328.  https://doi.org/10.1161/JAHA.116.005328 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017b) Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res 63.  https://doi.org/10.1111/jpi.12438
  58. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2017c) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335–346.  https://doi.org/10.1016/j.redox.2017.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017d) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 63:e12413.  https://doi.org/10.1111/jpi.12413 CrossRefPubMedCentralGoogle Scholar
  60. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017e) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507.  https://doi.org/10.1016/j.redox.2017.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhou W, Yu L, Fan J, Wan B, Jiang T, Yin J, Huang Y, Li Q, Yin G, Hu Z (2017f) Endogenous parathyroid hormone promotes fracture healing by increasing expression of BMPR2 through cAMP/PKA/CREB pathway in mice. Cell Physiol Biochem 42:551–563.  https://doi.org/10.1159/000477605 CrossRefPubMedGoogle Scholar
  62. Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J (2018a) Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res 64.  https://doi.org/10.1111/jpi.12450
  63. Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018b) Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res.  https://doi.org/10.1111/jpi.12471
  64. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H, Chen Y (2017) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+]c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23:101–113.  https://doi.org/10.1007/s12192-017-0827-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  • Pei Li
    • 1
  • Yuzhi Bai
    • 1
  • Xia Zhao
    • 1
  • Tian Tian
    • 1
  • Liying Tang
    • 1
  • Jing Ru
    • 1
  • Yun An
    • 1
  • Jing Wang
    • 1
  1. 1.Department of GeriatricsBeijing Chaoyang Hospital Affiliated to Capital Medical UniversityBeijingChina

Personalised recommendations