Cell Stress and Chaperones

, Volume 23, Issue 4, pp 685–693 | Cite as

An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity

  • Bita Mosaddegh
  • Zeinab Takalloo
  • Reza H. SajediEmail author
  • S. Shirin Shahangian
  • Leila Hassani
  • Behnam Rasti
Original Paper


Encysted embryos of Artemia are among the most stress-resistant eukaryotes partly due to the massive amount of a cysteine-rich protein termed artemin. High number of cysteine residues in artemin and their intramolecular spatial positions motivated us to investigate the role of the cysteine residues in the chaperone-like activity of artemin. According to the result of Ellman’s assay, there are nine free thiols (seven buried and two exposed) and one disulfide bond per monomer of artemin. Subsequent theoretical analysis of the predicted 3D structure of artemin confirmed the data obtained by the spectroscopic study. Native and reduced/modified forms of artemin were also compared with respect to their efficiency in chaperoning activity, tertiary structure, and stability. Since the alkylation and reduction of artemin diminished its chaperone activity, it appears that its chaperoning potential depends on the formation of intermolecular disulfide bond and the presence of cysteine residues. Comparative fluorescence studies on the structure and stability of the native and reduced protein revealed some differences between them. Due to the redox-dependent functional switching of artemin from the less to more active form, it can be finally suggested as a redox-dependent chaperone.


Artemin Cysteine-rich protein Redox-dependent chaperone Disulfide bond 


Funding information

The authors express their gratitude to the research council of Tarbiat Modares University and University of Guilan for financial support during the course of this project.


  1. Ahmad F, Yadav S, Taneja S (1992) Determining stability of proteins from guanidinium chloride transition curves. Biochem J 287(2):481–485. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barford D (2004) The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struc Biol 14(6):679–686. CrossRefGoogle Scholar
  3. Betz SF (1993) Disulfide bonds and the stability of globular proteins. Protein Sci 2(10):1551–1558. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beveridge T, Toma SJ, Nakai S (1974) Determination of SH-and SS-groups in some food proteins using Ellman’s reagent. J Food Sci 39(1):49–51. CrossRefGoogle Scholar
  5. Bolen DW, Santoro MM (1988) Unfolding free energy changes determined by the linear extrapolation method. 2. Incorporation of. DELTA. G. degree. NU values in a thermodynamic cycle. Biochemistry 27(21):8069–8074. CrossRefPubMedGoogle Scholar
  6. Chen T, Amons R, Clegg JS, Warner AH, MacRae TH (2003) Molecular characterization of artemin and ferritin from Artemia franciscana. Eur J Biochem 270(1):137–145. CrossRefPubMedGoogle Scholar
  7. Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274(4):1093–1101. CrossRefPubMedGoogle Scholar
  8. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, Charrier V, Parsonage D (1999) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38(47):15407–15416. CrossRefPubMedGoogle Scholar
  9. Clegg J (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200(Pt 3):467–475PubMedGoogle Scholar
  10. Clegg JS (2011) Stress-related proteins compared in diapause and in activated, anoxic encysted embryos of the animal extremophile, Artemia franciscana. J Insect Physiol 57(5):660–664. CrossRefPubMedGoogle Scholar
  11. Clegg JS, Campagna V (2006) Comparisons of stress proteins and soluble carbohydrate in encysted embryos of Artemia franciscana and two species of Parartemia. Comp Biochem Physiol B: Biochem Mol Biol 145(2):119–125. CrossRefGoogle Scholar
  12. Day RM, Gupta JS, MacRae TH (2003) A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones 8(2):183–193.<0183:ASHCPF>2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gajardo GM, Beardmore JA (2012) The brine shrimp Artemia: adapted to critical life conditions. Front Physiol 3:1–8. CrossRefGoogle Scholar
  14. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355(6355):33–45. CrossRefPubMedGoogle Scholar
  15. Gilbert HF (1993) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172Google Scholar
  16. Gu L, Abulimiti A, Li W, Chang Z (2002) Monodisperse Hsp16. 3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. J Mol Biol 319(2):517–526. CrossRefPubMedGoogle Scholar
  17. Hu Y, Bojikova-Fournier S, King AM, MacRae TH (2011) The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress Chaperones 16(2):133–141. CrossRefPubMedGoogle Scholar
  18. Ilbert M, Horst J, Ahrens S, Winter J, Graf PCF, Lilie H, Jakob U (2007) The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14(6):556–563. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jacob C, Holme AL, Fry FH (2004) The sulfinic acid switch in proteins. Org Biomol Chem 2(14):1953–1956. CrossRefPubMedGoogle Scholar
  20. Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper DR, Graf PC, Joachimiak A, Jakob U, Derewenda ZS (2004) The crystal structure of the reduced, Zn 2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. Structure 12(10):1901–1907. CrossRefPubMedPubMedCentralGoogle Scholar
  21. King AM, Toxopeus J, MacRae TH (2014) Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. J Exp Biol 217(10):1719–1724. CrossRefPubMedGoogle Scholar
  22. Kumsta C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48(22):4666–4676. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Landino LM, Hasan R, McGaw A, Cooley S, Smith AW, Masselam K, Kim G (2002) Peroxynitrite oxidation of tubulin sulfhydryls inhibits microtubule polymerization. Arch Biochem Biophys 398(2):213–220. CrossRefPubMedGoogle Scholar
  24. Liang P, MacRae TH (1999) The synthesis of a small heat shock/α-crystallin protein in Artemia and its relationship to stress tolerance during development. Develop Biol 207(2):445–456. CrossRefPubMedGoogle Scholar
  25. Liang P, Amons R, MacRae TH, Clegg JS (1997) Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat shock/α-crystallin protein. Eur J Biochem 243(1-2):225–232. CrossRefPubMedGoogle Scholar
  26. Lin Z, Lei H, Cao P (2007) Expression, purification, and in vitro refolding of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Protein Expr Purif 51(2):276–282. CrossRefPubMedGoogle Scholar
  27. MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Sem Cell Develop Biol 14:251–258. CrossRefGoogle Scholar
  28. Mayer M, Buchner J (2004) Refolding of inclusion body proteins. In: Decker J, Reischl U (eds) Molecular diagnosis of infectious diseases. Humana Press Inc, Totowa, (NJ), pp 239–245Google Scholar
  29. Mcauley A, Jacob J, Carl GK, Westland K, Lee HJ, Stephen RB, Rehder D, Gerd RK, David NB, Matsumura M (2008) Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 17:95–106. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 151(3):255–261. CrossRefPubMedGoogle Scholar
  31. Monsellier E, Bedouelle H (2005) Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng Des Sel 18(9):445–456. CrossRefPubMedGoogle Scholar
  32. Niforou K, Cheimonidou C, Trougakos IP (2014) Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2:323–332. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pocker Y, Stone JT (1967) The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 6(3):668–678. CrossRefPubMedGoogle Scholar
  34. Qiu Z, MacRae TH (2008a) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 411(3):605–611. CrossRefPubMedGoogle Scholar
  35. Qiu Z, MacRae TH (2008b) ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 275(14):3556–3566. CrossRefPubMedGoogle Scholar
  36. Rasti B, Shahangian SS, Sajedi RH, Taghdir M, Hasannia S, Ranjbar B (2009) Sequence and structural analysis of artemin based on ferritin: a comparative study. Biochim Bipphys Acta 1794(10):1407–1413. CrossRefGoogle Scholar
  37. Robbins HM, Van Stappen G, Sorgeloos P, Sung YY, MacRae TH, Bossier P (2010) Diapause termination and development of encysted Artemia embryos: roles for nitric oxide and hydrogen peroxide. J Exp Biol 213(9):1464–1470. CrossRefPubMedGoogle Scholar
  38. Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10(1):49–56. CrossRefPubMedGoogle Scholar
  39. Shahangian SS, Rasti B, Sajedi RH, Khodarahmi R, Taghdir M, Ranjbar B (2011) Artemin as an efficient molecular chaperone. Protein J 30(8):549–557. CrossRefPubMedGoogle Scholar
  40. Shirzad F, Sajedi RH, Shahangian SS, Rasti B, Mosadegh B, Taghdir M, Hosseinkhani S (2011) Deletion of extra C-terminal segment and its effect on the function and structure of artemin. Int J Biol Macromol 49(3):311–316. CrossRefPubMedGoogle Scholar
  41. Takalloo Z, Sajedi RH, Hosseinkhani S, Asghari SM (2016) Real-time monitoring of artemin in vivo chaperone activity using luciferase as an intracellular reporter. Arch Biochem Biophys 610:33–40. CrossRefPubMedGoogle Scholar
  42. Takalloo Z, Sajedi RH, Hosseinkhani S, Moazzenzade T (2017) Artemin protects cells and proteins against oxidative and salt stress. Int J Biol Macromol 95:618–624. CrossRefPubMedGoogle Scholar
  43. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6(1):24–27. CrossRefGoogle Scholar
  44. Wang CYJ, Huo L, Wang L, Feng W, Wang CC (2012) Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a′. J Biol Chem 287(2):1139–1149. CrossRefPubMedGoogle Scholar
  45. Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12(1):53–91. CrossRefPubMedGoogle Scholar
  46. Zavialov A, Benndorf R, Ehrnsperger M, Zav’yalov V, Dudich I, Buchner J (1998) The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. Int J Biol Macromol 22(3-4):163–173. CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  • Bita Mosaddegh
    • 1
  • Zeinab Takalloo
    • 2
  • Reza H. Sajedi
    • 2
    Email author
  • S. Shirin Shahangian
    • 1
  • Leila Hassani
    • 3
  • Behnam Rasti
    • 4
  1. 1.Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of Biochemistry, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Biological SciencesInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  4. 4.Department of Microbiology, Faculty of Basic Sciences, Lahijan BranchIslamic Azad University (IAU)LahijanIran

Personalised recommendations