Advertisement

Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis

  • Toshiki UjiEmail author
  • Yohei Gondaira
  • Satoru Fukuda
  • Hiroyuki Mizuta
  • Naotsune Saga
Original Paper
  • 43 Downloads

Abstract

Small heat shock proteins (sHSPs) are found in all three domains of life (Bacteria, Archaea, and Eukarya) and play a critical role in protecting organisms from a range of environmental stresses. However, little is known about their physiological functions in red algae. Therefore, we characterized the sHSPs (PysHSPs) in the red macroalga Pyropia yezoensis, which inhabits the upper intertidal zone where it experiences fluctuating stressful environmental conditions on a daily and seasonal basis, and examined their expression profiles at different developmental stages and under varying environmental conditions. We identified five PysHSPs (PysHSP18.8, 19.1, 19.2, 19.5, and 25.8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that expression of the genes PysHSP18.8, PysHSP19.5, and PysHSP25.8 was repressed at all the developmental stages under normal conditions, whereas PysHSP19.1 and PysHSP19.2 were overexpressed in mature gametophytes and sporophytes. Exposure of the gametophytes to high temperature, oxidative stress, or copper significantly increased the mRNA transcript levels of all the five genes, while exogenous application of the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) significantly increased the expression levels of PysHSP19.2, PysHSP19.5, and PysHSP25.8. These findings will help to further our understanding of the role of PysHSP genes and provide clues about how Pyropia species can adapt to the stressful conditions encountered in the upper intertidal zone during their life cycle.

Keywords

Pyropia yezoensis Small heat shock proteins Red algae Abiotic stress Plant growth hormone 

Notes

Acknowledgments

We are grateful to Drs. Katsutoshi Arai and Takafumi Fujimoto (Hokkaido University, Japan) for kindly providing LightCycler 480 system. This study was supported by a grant-in-aid for Young Scientists (B) (16K18740 to T.U.) from the Japan Society for the Promotion of Science (JSPS).

Supplementary material

12192_2018_959_MOESM1_ESM.docx (643 kb)
ESM 1 (DOCX 643 kb)

References

  1. Abe S, Kurashima A, Yokohama Y, Tanaka J (2001) The cellular ability of desiccation tolerance in Japanese intertidal seaweeds. Bot Mar 44:125–131CrossRefGoogle Scholar
  2. Aevermann BD, Waters ER (2008) A comparative genomic analysis of the small heat shock proteins in Caenorhabditis elegans and briggsae. Genetica 133:307–319CrossRefGoogle Scholar
  3. Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM (2008) Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins alpha A- and alpha B-crystallin. J Mol Biol 382:812–824CrossRefGoogle Scholar
  4. Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37CrossRefGoogle Scholar
  5. Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collen J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang Z-Y, Yan J, Yarish C, Zauner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 114:E6361–E6370CrossRefGoogle Scholar
  6. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404CrossRefGoogle Scholar
  7. Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, McHaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM (2017) The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 22:601–611CrossRefGoogle Scholar
  8. Collén J, Hervé C, Guisle-Marsollier I, Léger JJ, Boyen C (2006) Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate. J Exp Bot 57:3869–3881CrossRefGoogle Scholar
  9. Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock JM, Coelho SM, Colleoni C, Czjzek M, Da Silva C, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldón T, Gachon CM, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan DH, Meslet-Cladiere L, Moustafa A, Nehr Z, Nyvall Collén P, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 2013:5247–5252CrossRefGoogle Scholar
  10. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53.  https://doi.org/10.3389/fenvs.2014.00053 CrossRefGoogle Scholar
  11. de Thonel A, Le Mouel A, Mezger V (2012) Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 44:1593–1612CrossRefGoogle Scholar
  12. DeRocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96:1038–1047CrossRefGoogle Scholar
  13. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971CrossRefGoogle Scholar
  14. Flores-Molina MR, Thomas D, Lovazzano C, Nunez A, Zapata J, Kumar M, Correa JA, Contreras-Porcia L (2014) Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. Aquat Bot 113:90–99CrossRefGoogle Scholar
  15. Gledhill M, Nimmo M, Hill SJ, Brown MT (1997) The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J Phycol 33:2–11CrossRefGoogle Scholar
  16. Ham DJ, Moon JC, Hwang SG, Jang CS (2013) Molecular characterization of two small heat shock protein genes in rice: their expression patterns, localizations, networks, and heterogeneous overexpressions. Mo Biol Rep 40:6709–6720CrossRefGoogle Scholar
  17. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684CrossRefGoogle Scholar
  18. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefGoogle Scholar
  19. Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15:405–414CrossRefGoogle Scholar
  20. Jin Y, Yang S, Im S, Jeong WJ, Park E, Choi DW (2017) Overexpression of the small heat shock protein, PtsHSP19.3 from marine red algae, Pyropia tenera (Bangiales, Rhodophyta) enhances abiotic stress tolerance in Chlamydomonas. J Plant Biotechnol 44:287–295CrossRefGoogle Scholar
  21. Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, de Jong WW (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8:53–61CrossRefGoogle Scholar
  22. Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, Kuroiwa T, Misumi O (2014) Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol Evol 6:2731–2740CrossRefGoogle Scholar
  23. Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201CrossRefGoogle Scholar
  24. López-Cristoffanini C, Zapata J, Gaillard F, Potin P, Correa JA, Contreras-Porcia L (2015) Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales). Proteomics 15:3954–3968CrossRefGoogle Scholar
  25. Luo Q, Zhu Z, Zhu Z, Yang R, Qian F, Chen H, Yan X (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9.  https://doi.org/10.1371/journal.pone.0094354
  26. Mao QL, Chang ZY (2001) Site-directed mutation on the only universally conserved residue Leu122 of small heat shock protein Hsp16.3. Biochem Biophys Res Commun 289:1257–1261CrossRefGoogle Scholar
  27. Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288CrossRefGoogle Scholar
  28. Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19CrossRefGoogle Scholar
  29. Moenne A, González A, Sáez CA (2016) Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. Aquat Toxicol 176:30–37CrossRefGoogle Scholar
  30. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, NakayamaI IF, NakajimaK SM, WadaT KS, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, susabi-nori (Pyropia yezoensis). PLoS One 8(3):e57122CrossRefGoogle Scholar
  31. Negri A, Oliveri C, Sforzini S, Mignione F, Viarengo A, Banni M (2013) Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS One 8:e66802CrossRefGoogle Scholar
  32. Park HS, Jeong WJ, Kim E, Jung Y, Lim JM, Hwang MS, Park EJ, Ha DS, Choi DW (2012) Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. Mar Biotechnol 14:332–342CrossRefGoogle Scholar
  33. Pasta SY, Raman B, Ramakrishna T, Rao CM (2004) The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Mol Vis 10:655–662Google Scholar
  34. Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CAAT box elements, and HSE sequences for enhanced expression of chimeric heat-shock genes in transgenic tobacco. Mol Gen Genet 231:226–232Google Scholar
  35. Sahoo D, Tang X, Yarish C (2002) Porphyra—the economic seaweed as a new experimental system. Curr Sci 83:1313–1316Google Scholar
  36. Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119CrossRefGoogle Scholar
  37. Shigeoka S, Maruta T (2014) Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 78:1457–1470CrossRefGoogle Scholar
  38. Shiu CT, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865CrossRefGoogle Scholar
  39. Sun WN, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9CrossRefGoogle Scholar
  40. Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463.  https://doi.org/10.1186/s12864-015-1586-1 CrossRefGoogle Scholar
  41. Suzuki N, Rizhsky L, Liang HJ, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol 139:1313–1132CrossRefGoogle Scholar
  42. Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66:844–851CrossRefGoogle Scholar
  43. Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav:1621–1633.  https://doi.org/10.4161/psb.22455
  44. Uji T, Takahashi M, Saga N, Mikami K (2010) Visualization of nuclear localization of transcription factors with cyan and green fluorescent proteins in the red alga Porphyra yezoensis. Mar Biotechnol 12:150–159CrossRefGoogle Scholar
  45. Uji T, Monma R, Mizuta H, Saga N (2012) Molecular characterization and expression analysis of two Na+/H+ antiporter genes in the marine red alga Porphyra yezoensis. Fish Sci 78:985–991CrossRefGoogle Scholar
  46. Uji T, Sato R, Mizuta H, Saga N (2013) Changes in membrane fluidity and phospholipase D activity are required for heat activation of PyMBF1 in Pyropia yezoensis (Rhodophyta). J Appl Phycol 25:1887–1893CrossRefGoogle Scholar
  47. Uji T, Matsuda R, Takechi K, Takano H, Mizuta H, Takio S (2016) Ethylene regulation of sexual reproduction in the marine red alga Pyropia yezoensis (Rhodophyta). J Appl Phycol 28:3501–3509CrossRefGoogle Scholar
  48. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86.  https://doi.org/10.1186/s12870-016-0771-y CrossRefGoogle Scholar
  49. Wang FJ, Wang CB, Zou TL, Xu NJ, Sun X (2017) Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance. PLoS One 12:18.  https://doi.org/10.1371/journal.pone.0176531 Google Scholar
  50. Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403CrossRefGoogle Scholar
  51. Waters ER, Rioflorido I (2007) Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J Mol Evol 65:162–174CrossRefGoogle Scholar
  52. Yang G, Wang Y, Zhang K, Gao C (2014) Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment. Mol Biol Rep 41:1279–1289CrossRefGoogle Scholar
  53. Zhang Y, Zou B, Lu S, Ding Y, Liu H, Hua J (2016) Expression and promoter analysis of the OsHSP16.9C gene in rice. Biochem Biophys Res Commun 479:260–265CrossRefGoogle Scholar
  54. Zhou B, Tang X, Wang Y (2010) Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from oxidative stress when exposed to heat stress. Chin J Oceanol Limnol 28:924–932CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.Division of Marine Life Science, Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.Section of Food Sciences, Institute for Regional InnovationHirosaki UniversityAomoriJapan

Personalised recommendations