Cell Stress and Chaperones

, Volume 24, Issue 1, pp 203–212 | Cite as

Microarray analysis and functional characterization revealed NEDD4-mediated cardiomyocyte autophagy induced by angiotensin II

  • Ying Gu
  • Fan Yang
  • Yongchao Yu
  • Jianxia Meng
  • Yang Li
  • Ruming Xu
  • Yang Liu
  • Yuchen Xiao
  • Zhiyun Xu
  • Liping MaEmail author
  • Guokun WangEmail author
Original Paper


Autophagy is a highly regulated intracellular process to maintain cellular homeostasis by degrading damaged proteins and organelles. Dysregulation of autophagic activity in cardiomyocytes is implicated in various heart diseases. However, the underlying mechanisms of cardiomyocyte autophagy are not yet known. In this study, the enhanced cardiomyocyte autophagy was induced by angiotensin II (0.1 μmol/L), demonstrated by the increase of double-membraned autophagosomes, BECN1 expression, and the conversion of LC3-I to LC3-II. Microarray assay showed that a total of 197 genes were differentially expressed in angiotensin II–treated cardiomyocytes, including 22 upregulated and 175 downregulated. Gene ontology functional enrichment analysis showed that nearly 50% of differentially expressed genes were related to metabolism and energy maintenance in biological process. Pathway analysis showed that most frequently represented pathways were involved in metabolism and the citric acid cycle and respiratory electron transport. Based on KEGG database, 10 differentially expressed genes were found to be involved in autophagic signaling pathways. The hub genes with high degree were predicted to regulate cardiomyocyte autophagy activity by PPI network analysis. NEDD4, the top focus hub gene, showed a clear time-dependent increased expression pattern in cardiomyocytes during angiotensin II treatment. Moreover, inhibition of NEDD4 could significantly reduce cardiomyocyte autophagy induced by angiotensin II. In summary, the cardiomyocyte autophagy–related genes were screened by microarray assay combining with bioinformatics analysis. The role of NEDD4 on cardiomyocyte autophagy might provide valuable clues to finding therapeutic targets for heart diseases.


Cardiomyocytes Autophagy Angiotensin II Bioinformatics analysis NEDD4 


Funding information

This work was supported by National Natural Science Foundation of China (81470592, 81600010, 81800341, and 81873524), Project of the Science and Technology Committee of Shanghai (16ZR1400900), and Science of Foundation of Shanghai Municipal Health Planning Commission (201740221).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12192_2018_957_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)


  1. Chen JH, Zhang P, Chen WD, Li DD, Wu XQ, Deng R, Jiao L, Li X, Ji J, Feng GK, Zeng YX, Jiang JW, Zhu XF (2015) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11:239–252. CrossRefPubMedCentralGoogle Scholar
  2. D’Andrea AD (2010) Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med 362:1909–1919. CrossRefPubMedCentralGoogle Scholar
  3. Das DK, Maulik N, Engelman RM (2004) Redox regulation of angiotensin II signaling in the heart. J Cell Mol Med 8:144–152CrossRefGoogle Scholar
  4. Demos-Davies KM, Ferguson BS, Cavasin MA, Mahaffey JH, Williams SM, Spiltoir JI, Schuetze KB, Horn TR, Chen B, Ferrara C, Scellini B, Piroddi N, Tesi C, Poggesi C, Jeong MY, McKinsey TA (2014) HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am J Physiol Heart Circ Physiol 307:H252–H258. CrossRefPubMedCentralGoogle Scholar
  5. Frankel LB, Lund AH (2012) MicroRNA regulation of autophagy. Carcinogenesis 33:2018–2025. CrossRefGoogle Scholar
  6. Gu Y, Yang F, Xu RM, Zhang YY, Li Y, Liu SX, Zhang GX, Wang GK, Ma LP (2017) Differential expression profile of long non-coding RNA in cardiomyocytes autophagy induced by angiotensin II. Cell Biol Int 41:1076–1082. CrossRefGoogle Scholar
  7. Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A (2018) Autophagy induction by trehalose: molecular mechanisms and therapeutic impacts. J Cell Physiol 233:6524–6543. CrossRefGoogle Scholar
  8. Jansen HJ, van Essen P, Koenen T, Joosten LA, Netea MG, Tack CJ, Stienstra R (2012) Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153:5866–5874. CrossRefGoogle Scholar
  9. Kim KH, Lee MS (2014) Autophagy--a key player in cellular and body metabolism. Nat Rev Endocrinol 10:322–337. CrossRefGoogle Scholar
  10. Kishore R, Krishnamurthy P, Garikipati VNS, Benedict C, Nickoloff E, Khan M, Johnson J, Gumpert AM, Koch WJ, Verma SK (2015) Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. J Mol Cell Cardiol 89:203–213. CrossRefPubMedCentralGoogle Scholar
  11. Kovsan J, Blüher M, Tarnovscki T, Klöting N, Kirshtein B, Madar L, Shai I, Golan R, Harman-Boehm I, Schön MR, Greenberg AS, Elazar Z, Bashan N, Rudich A (2011) Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96:E268–E277. CrossRefGoogle Scholar
  12. Li G, Wang G, Ma L, Guo J, Song J, Ma L, Zhao X (2016) miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38alpha. Biochem Biophys Res Commun 478:1165–1172. CrossRefGoogle Scholar
  13. Liao X, Zhang R, Lu Y, Prosdocimo DA, Sangwung P, Zhang L, Zhou G, Anand P, Lai L, Leone TC, Fujioka H, Ye F, Rosca MG, Hoppel CL, Schulze PC, Abel ED, Stamler JS, Kelly DP, Jain MK (2015) Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J Clin Invest 125:3461–3476. CrossRefPubMedCentralGoogle Scholar
  14. Liu X, Deng Y, Xu Y, Jin W, Li H (2018) MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 118:133–146. CrossRefGoogle Scholar
  15. Martinet W, De Meyer GR (2009) Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 104:304–317. CrossRefGoogle Scholar
  16. Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P, Marchetti P (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086. CrossRefGoogle Scholar
  17. Meng L, Xu Y, Xu C, Zhang W (2016) Biomarker discovery to improve prediction of breast cancer survival: using gene expression profiling, meta-analysis. and tissue validation Onco Targets Ther 9:6177–6185. CrossRefGoogle Scholar
  18. Mialet-Perez J, Vindis C (2017) Autophagy in health and disease: focus on the cardiovascular system. Essays Biochem 61:721–732. CrossRefGoogle Scholar
  19. Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20:521–527. CrossRefGoogle Scholar
  20. Munson MJ, Ganley IG (2015) MTOR, PIK3C3, and autophagy: signaling the beginning from the end. Autophagy 11:2375–2376. CrossRefPubMedCentralGoogle Scholar
  21. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CYJ, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601. CrossRefGoogle Scholar
  22. Pei G, Buijze H, Liu H, Moura-Alves P, Goosmann C, Brinkmann V, Kawabe H, Dorhoi A, Kaufmann SHE (2017) The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy. Autophagy 13:2041–2055. CrossRefPubMedCentralGoogle Scholar
  23. Riehle C, Wende AR, Sena S, Pires KM, Pereira RO, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, Perry CN, Dong XC, Valdez S, Rech M, Sheng X, Weimer BC, Gottlieb RA, White MF, Abel ED (2013) Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest 123:5319–5333. CrossRefPubMedCentralGoogle Scholar
  24. Rifki OF, Hill JA (2012) Cardiac autophagy: good with the bad. J Cardiovasc Pharmacol 60:248–252. CrossRefPubMedCentralGoogle Scholar
  25. Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 5:731–740. CrossRefGoogle Scholar
  26. Sasaki Y, Ikeda Y, Iwabayashi M, Akasaki Y, Ohishi M (2017) The impact of autophagy on cardiovascular senescence and diseases. Int Heart J 58:666–673. CrossRefGoogle Scholar
  27. Schluter KD, Wenzel S (2008) Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 119:311–325. CrossRefGoogle Scholar
  28. Sciarretta S, Yee D, Nagarajan N, Bianchi F, Saito T, Valenti V, Tong M, del Re DP, Vecchione C, Schirone L, Forte M, Rubattu S, Shirakabe A, Boppana VS, Volpe M, Frati G, Zhai P, Sadoshima J (2018) Trehalose-induced activation of autophagy improves cardiac remodeling after myocardial infarction. J Am Coll Cardiol 71:1999–2010. CrossRefGoogle Scholar
  29. Wang GK, Li SH, Zhao ZM, Liu SX, Zhang GX, Yang F, Wang Y, Wu F, Zhao XX, Xu ZY (2016a) Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension. Oncotarget 7:54263–54273. PubMedCentralGoogle Scholar
  30. Wang Y, Zhao ZM, Zhang GX, Yang F, Yan Y, Liu SX, Li SH, Wang GK, Xu ZY (2016b) Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells. Biochem Biophys Res Commun 479:358–364. CrossRefGoogle Scholar
  31. Wang J, Davis S, Zhu M, Miller EA, Ferro-Novick S (2017) Autophagosome formation: where the secretory and autophagy pathways meet. Autophagy 13:973–974. CrossRefPubMedCentralGoogle Scholar
  32. Xu Q, Zhu N, Chen S, Zhao P, Ren H, Zhu S, Tang H, Zhu Y, Qi Z (2017) E3 ubiquitin ligase Nedd4 promotes Japanese encephalitis virus replication by suppressing autophagy in human neuroblastoma cells. Sci Rep 7:45375. CrossRefPubMedCentralGoogle Scholar
  33. Zhang N, Cao MM, Liu H, Xie GY, Li YB (2015) Autophagy regulates insulin resistance following endoplasmic reticulum stress in diabetes. J Physiol Biochem 71:319–327. CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.Department of Cardiology, Changhai HospitalThe Second Military Medical UniversityShanghaiChina
  2. 2.Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai HospitalThe Second Military Medical UniversityShanghaiChina
  3. 3.Department of Pharmacy, Shanghai 9th People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations