Advertisement

A new algorithm for solving multi-valued variational inequality problems

  • Xi Zhang
  • Wenling ZhaoEmail author
  • Meng Zhang
Original Research
  • 50 Downloads

Abstract

In this paper, we present a new algorithm for solving multi-valued variational inequality problems, which combines the subgradient extragradient algorithm with inertial algorithm. We prove that the algorithm is globally convergent when the multi-valued mapping is continuous and pseudomonotone with nonempty compact convex values. And the convergence rate of this algorithm is Q-linear convergence.

Keywords

Multi-valued variational inequality Inertial subgradient extragradient algorithm Global convergence Q-linear convergence 

Mathematics Subject Classification

49 90C25 

Notes

Acknowledgements

This research was supported by National Natural Science Foundations of China (11771255) and Natural Science Foundation of Shandong Province (ZR2016AM07).

References

  1. 1.
    Parida, J., Sen, A.: A variational-like inequality for multifunctions with applications. J. Math. Anal. Appl. 124, 73–81 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Noor, M.A.: Multivalued general equilibrium problems. J. Math. Anal. Appl. 283, 140–149 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Allevi, E., Gnudi, A., et al.: Regularization of non-monotone multi-valued variational inequalities with applications to partitionable problems. Pure Math. Appl. 1–2, 1–12 (2006)zbMATHGoogle Scholar
  4. 4.
    Yufei, Y., Zhongzhi, Z.: A trust region algorithm for variational inequality problems with inequality constraints. Numer. Math. J. Chin. Univ. 12, 2857 (2001)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Han, D.: A new hybrid generalized proximal point algorithm for variational inequality problems. J. Glob. Optim. 26, 125–140 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Han, D.: A proximal decomposition algorithm for variational inequality problems. J. Comput. Appl. Math. 161, 231–244 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fan, X., Yan, Q.: An interior point algorithm for variational inequality problems. Int. J. Contemp. Math. Sci. 52, 2595–2605 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Xiu, N., Zhang, J.: Some recent advances in projection-type algorithms for variational inequalities. J. Comput. Appl. Math. 152, 559–585 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Van Hieu, D.: An explicit parallel algorithm for variational inequalities. J. Bull. Malays. Math. Sci. Soc. 42, 201–221 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, C747–C756 (1976)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient algorithm for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Thong, D.V., Van Hieu, D.: Modified subgradient extragradient method for variational inequality problems. J. Numer. Algorithms 79, 597–610 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fang, C., Chen, S., Yang, C.: An algorithm for solving multi-valued variational inequality. J. Inequal. Appl. 2013, 1–9 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fang, C., Chen, S.: A subgradient extragradient algorithm for solving multi-valued variational inequality. Appl. Math. Comput. 229, 123–130 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Thong, D.V., Van Hieu, D.: Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. J. Numer. Algorithms 80, 1283–1307 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Malitsky, Y.V., Semenov, V.V.: A hybrid algorithm without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)CrossRefGoogle Scholar
  17. 17.
    Dong, Q.L., Jiang, D., Gibali, A.: A modified subgradient extragradient method for solving the variational inequality problem. J. Numer. Algorithms 79, 927–940 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dong, Q.L., Lu, Y.Y., Yang, J., et al.: Approximately solving multi-valued variational inequalities by using a projection and contraction algorithm. J. Numer. Algorithms 76, 799–812 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 4–5 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Konnov, I.V.: A combined relaxation method for variational inequalities with nonlinear constraints. Math. Program. 80, 239–252 (1998)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)zbMATHGoogle Scholar

Copyright information

© Korean Society for Informatics and Computational Applied Mathematics 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsShandong University of TechnologyZiboPeople’s Republic of China

Personalised recommendations