Advertisement

Nonhomogeneous backward heat conduction problem: Compact filter regularization and error estimates

  • Ankita Shukla
  • Mani MehraEmail author
Original Research
  • 32 Downloads

Abstract

In this paper, compact filter regularization method is introduced for the numerical solution of nonhomogeneous backward heat conduction problem. Compact filter regularization is a new, simple and convenient regularization method. The error estimate for this method is provided. Meanwhile, the numerical implementation is discussed. Numerical results conclude that the proposed algorithm is efficient and effective.

Keywords

Backward heat conduction problem Nonhomogeneous heat Compact filter regularization Ill-posed problem 

Notes

Acknowledgements

The authors also acknowledge the support provided by the Department of Science and Technology, India, under the grant number SERB/F/11946/2018-2019.

References

  1. 1.
    Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (2006)zbMATHGoogle Scholar
  2. 2.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularizaton of Inverse Problems. Kluwer Academics, Dordrecht (1996)CrossRefGoogle Scholar
  3. 3.
    Lattès, R., Lions, J.L.: The Method of Quasi-Reversibility. Applications to Partial Differential Equations, vol. 18. American Elsevier Publishing Co., Inc., New York (1969)zbMATHGoogle Scholar
  4. 4.
    Miller, K.: Stabilized quasi-reversibility and other nearly best possible methods for non-well-posed problems. In: Symposium on Non-Well-Posed Problems and Logarithmic Convexity. Lecture Notes in Mathematics, vol. 316, pp. 161–176. Springer-Verlag, Berlin (1973)Google Scholar
  5. 5.
    Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: An iterative boundary element method for solving the one-dimensional backward heat conduction problem. Int. J. Heat Mass Transf. 44, 1937–1946 (2001)CrossRefGoogle Scholar
  6. 6.
    Hào, D.N.: A mollification method for ill-posed problems. Numer. Math. 68, 469–506 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kirkup, S.M., Wadsworth, M.: Solution of inverse diffusion problems by operator-splitting methods. Appl. Math. Model 26, 1003–1018 (2002)CrossRefGoogle Scholar
  8. 8.
    Fu, C.L., Xiong, X.T., Qian, Z.: Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331, 472–480 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Seidman, T.I.: Optimal filtering for the backward heat equation. SIAM J. Numer. Anal. 33, 162–170 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, C.S.: Group preserving scheme for backward heat conduction problems. Int. J. Heat Mass Transf. 47, 2567–2576 (2004)CrossRefGoogle Scholar
  11. 11.
    Mera, N.S.: The method of fundamental solutions for the backward heat conduction problem. Inverse Probl. Sci. Eng. 13, 65–78 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ames, K.A., Epperson, J.F.: A kernel-based method for the approximate solution of backward parabolic problems. SIAM J. Numer. Anal. 34, 1357–1390 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, X., Blaisdell, G.A., Lyrintzis, A.S.: High-order compact schemes with filters on multi-block domains. J. Sci. Comput. 21, 321–339 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Visbal, M.R., Rizzetta, D.P.: Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes. J. Fluids Eng. 124, 836–847 (2002)CrossRefGoogle Scholar
  16. 16.
    Tyliszczak, A.: Influence of the compact explicit filtering method on the perturbations growth in temporal shear-layer flow. J. Theor. Appl. Mech. 41, 19–32 (2003)Google Scholar
  17. 17.
    Tuan, N.H., Trong, D.D.: Two regularization methods for backward heat problems with new error estimates. Nonlinear Anal. RWA 12, 1720–1732 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Korean Society for Informatics and Computational Applied Mathematics 2019

Authors and Affiliations

  1. 1.Department of MathematicsIIT DelhiHauz Khas, New DelhiIndia

Personalised recommendations