Advertisement

Some new lower bounds for augmented Zagreb index

  • Boris FurtulaEmail author
  • Ivan Gutman
  • Marjan Matejić
  • Emina Milovanović
  • Igor Milovanović
Original Research
  • 41 Downloads

Abstract

Let \(G=(V,E)\), \(V=\{1,2,\ldots ,n\}\), be a simple connected graph with \(n\ge 3\) vertices and m edges, with vertex degree sequence \(d_1\ge d_2\ge \cdots \ge d_n\), \(d_i=d(i)\). The augmented Zagreb index is defined as \(AZI=\sum _{i\sim j}\left( \frac{d_i d_j}{d_i+d_j-2}\right) ^3\), where \(i\sim j\) denotes adjacency of vertices i and j. Some new lower bounds for AZI are obtained.

Keywords

Degree (of vertex) Vertex degree based index Augmented Zagreb index Atom–bond connectivity index 

Mathematics Subject Classification

05C07 05C90 

Notes

Acknowledgements

This paper was supported by Serbian Ministry of Education, Science and Technological Development through Grant Nos. 174033, TR32009 and TR3212.

References

  1. 1.
    Bianchi, M., Cornaro, A., Palacios, J.L., Torriero, A.: New upper bounds for the ABC index. MATCH Commun. Math. Comput. Chem. 76, 117–130 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bianchi, M., Clemente, G.P., Cornaro, A., Palacios, J.L., Torreiro, A.: New trends in majorization techniques for bounding topological indices. In: Gutman, I., Furtula, B., Das, K.C., Milovanović, E., Milovanović, I. (eds.) Bounds in Chemical Graph Theory - Basics, pp. 3–66. University of Kragujevac, Kragujevac (2017)Google Scholar
  3. 3.
    Bollobás, B., Erdős, P.: Graphs of extremal weights. Ars Comb. 50, 225–233 (1998)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cavers, M.: The normalized Laplacian matrix and general Randić index of graphs. PhD thesis, Univ. Regina, Regina (2010)Google Scholar
  5. 5.
    Das, K.C.: Atom-bond connectivity index of graphs. Discrete Appl. Math. 158, 1181–1188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Das, K.C., Gutman, I., Furtula, B.: On atom-bond connectivity index. Filomat 26, 733–738 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Estrada, E., Torres, L., Rodríguez, L., Gutman, I.: Atom-bond connectivity index: modelling the enthalpy of formation of alkanes. Indian J. Chem. 37A, 849–855 (1998)Google Scholar
  8. 8.
    Furtula, B., Graovac, A., Vukičević, D.: Atom-bond connectivity index of trees. Discrete Appl. Math. 157, 2828–2835 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Furtula, B., Graovac, A., Vukičević, D.: Augmented Zagreb index. J. Math. Chem. 48, 370–380 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Furtula, B., Gutman, I., Dehmer, M.: On structure-sensitivity of degree-based topological indices. Appl. Math. Comput. 219, 8973–8978 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gutman, I.: Degree-based topological indices. Croat. Chem. Acta 86, 351–361 (2013)CrossRefGoogle Scholar
  12. 12.
    Gutman, I., Ruščić, B., Trinajstić, N., Wilcox, C.F.: Graph theory and molecular orbitals. XII Acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)Google Scholar
  13. 13.
    Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)CrossRefGoogle Scholar
  14. 14.
    He, S., Chen, H., Deng, H.: The vertex-degree-based topological indices of fluoranthene-type benzenoid systems. MATCH Commun. Math. Comput. Chem. 78, 431–458 (2017)MathSciNetGoogle Scholar
  15. 15.
    Horoldagva, B., Gutman, I.: On some vertex-degree-based graph invariants. MATCH Commun. Math. Comput. Chem. 65, 723–730 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Huang, Y., Liu, B., Gan, L.: Augmented Zagreb index of connected graphs. MATCH Commun. Math. Comput. Chem. 67, 483–494 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Li, X., Gutman, I.: Mathematical Aspects of Randić-type Molecular Structure Descriptors. University of Kragujevac, Kragujevac (2006)zbMATHGoogle Scholar
  18. 18.
    Liu, J., Zheng, R., Chen, J., Liu, B.: The extremal general atom-bond connectivity indices of unicyclic and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 81, 345–360 (2019)Google Scholar
  19. 19.
    Ma, Y., Cao, S., Shi, Y., Gutman, I., Dehmer, M., Furtula, B.: From the connectivity index to various Randić-type descriptors. MATCH Commun. Math. Comput. Chem. 80, 85–106 (2018)MathSciNetGoogle Scholar
  20. 20.
    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Springer, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mitrinović, D.S., Vasić, P.M.: Analytic Inequalities. Springer, Berlin (1970)CrossRefGoogle Scholar
  22. 22.
    Palacios, J.L.: Bounds for the augmented Zagreb index and the atom-bond connectivity indices. Appl. Math. Comput. 307, 141–145 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber. Acad. Wissen. Wien 122, 1295–1438 (1913)zbMATHGoogle Scholar
  24. 24.
    Randić, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)CrossRefGoogle Scholar
  25. 25.
    Wang, D., Huang, Y., Liu, B.: Bounds on augmented Zagreb index. MATCH Commun. Math. Comput. Chem. 68, 209–216 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yurtas, A., Togan, M., Lokesha, V., Cangul, I.N., Gutman, I.: Inverse problem for Zagreb indices. J. Math. Chem. 57, 609–615 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2019

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Faculty of Electronics EngineeringUniversity of NišNišSerbia

Personalised recommendations