A new public key cryptosystem based on Edwards curves

  • Maher Boudabra
  • Abderrahmane NitajEmail author
Original Research


The elliptic curve cryptography plays a central role in various cryptographic schemes and protocols. For efficiency reasons, Edwards curves and twisted Edwards curves have been introduced. In this paper, we study the properties of twisted Edwards curves on the ring \({\mathbb {Z}}/n{\mathbb {Z}}\) where \(n=p^rq^s\) is a prime power RSA modulus and propose a new scheme and study its efficiency and security.


Elliptic curves Twisted Edwards curves RSA cryptosystem KMOV cryptosystem 

Mathematics Subject Classification




  1. 1.
    Bernstein, D.J., Birkner, T.P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008, Springer Lecture Notes in Computer Science, vol. 5023, pp. 389–405. Springer (2008)Google Scholar
  2. 2.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (eds.) Advances in Cryptology-ASIACRYPT 2007. ASIACRYPT 2007. Lecture Notes in Computer Science, vol. 4833, pp. 29–50. Springer, Berlin (2007)Google Scholar
  3. 3.
    Bernstein, D.J., Lange, T.: Explicit-formulas database. (2007)
  4. 4.
    Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring \(N = p^rq\) for large \(r\). In: Wiener, M. (eds.) Advances in Cryptology-CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer Science, vol. 1666, pp. 326–337. Springer, Berlin (1999)Google Scholar
  5. 5.
    Boudabra, M., Nitaj, A.: A new generalization of the KMOV cryptosystem. J. Appl. Math. Comput. 57(1–2), 229–245 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bressoud, D.M.: Factorization and Primality Testing, Undergraduate Texts in Mathematics, 1989th edn. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    Compaq Computer Corporation: Cryptography Using Compaq MultiPrime Technology in a Parallel Processing Environment (2000).
  8. 8.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–422 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fujioka, A., Okamoto, T., Miyaguchi, S.: ESIGN: an efficient digital signature implementation for smard cards. In: EUROCRYPT 1991, Lecture Notes in Computer Science, vol. 547, pp. 446–457 (1991)Google Scholar
  11. 11.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  12. 12.
    Koyama, K., Maurer, U.M., Okamoto, T., Vanstone S.A.: New public-key schemes based on elliptic curves over the ring \({\mathbb{Z}}_n\). In: Advances in Cryptology-CRYPTO’91, Lecture Notes in Computer Science, pp. 252–266. Springer (1991)Google Scholar
  13. 13.
    Lenstra, H.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lenstra, A.K., Lenstra Jr., H.W. (eds.): The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993)Google Scholar
  15. 15.
    Nitaj, A., Rachidi, T.: New attacks on RSA with moduli \(N=p^{r}q\). In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds.) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science, vol. 9084, pp. 352–360. Springer, Cham (2015)Google Scholar
  16. 16.
    Okamoto, T., Uchiyama, S.: A new public key cryptosystem as secure as factoring. In: EUROCRYPT 1998, Lecture Notes in Computer Science, vol. 1403, pp. 308–318 (1998)Google Scholar
  17. 17.
    Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sarkar, S.: Revisiting prime power RSA. Discrete Appl. Math. 203(C), 127–133 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schmitt, S., Zimmer, H.G.: Elliptic Curves: A Computational Approach. Walter de Gruyter, Berlin (2003)zbMATHGoogle Scholar
  20. 20.
    Takagi, T.: Fast RSA-type cryptosystem modulo \(p^kq\). In: Krawczyk, H. (eds) Advances in Cryptology-CRYPTO’98. CRYPTO 1998. Lecture Notes in Computer Science, vol. 1462. Springer, Berlin (1998)Google Scholar
  21. 21.
    Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. CRC Press, Taylor & Francis Group, London (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2019

Authors and Affiliations

  1. 1.Université de MonastirMonastirTunisia
  2. 2.Laboratoire de Mathématiques Nicolas OresmeUniversité de Caen NormandieCaenFrance

Personalised recommendations