Advertisement

Journal of Applied Mathematics and Computing

, Volume 59, Issue 1–2, pp 677–691 | Cite as

Drug therapy model with time delays for HIV infection with virus-to-cell and cell-to-cell transmissions

  • Nicoleta TarfuleaEmail author
Original Research
  • 209 Downloads

Abstract

In this paper, we analyze models of drug therapy for a HIV model with multiple delays considered in Chen et al. (J Math Anal Appl 442:642–672, 2016). As expected, in the presence of perfect inhibitors the populations of infected cells, virus, and effector cells decay exponentially to zero. When protease inhibitors are used, the production of infectious virions is diminished, as shown in our drug therapy model. First, we prove that the solution is positive and bounded from above. Our main result states that both the infected cell and infectious virus populations are asymptotically bounded by terms proportional to \(1-\eta \), where \(\eta \in [0,1]\) represents the protease inhibitor(s) effectiveness. Furthermore, under an additional condition, the infectious virus population is asymptotically bounded by a constant multiple of \((1-\eta )^2\).

Keywords

HIV infection Treatment Protease inhibitors Delay Stability 

Mathematics Subject Classification

34A34 34D20 37N25 92B05 

Notes

Acknowledgements

This work was partially supported by a grant from the Simons Foundation (\(\#\, 429449 \) to Nicoleta E. Tarfulea).

References

  1. 1.
    Adjedj, B.: Application of the decomposition method to the understanding of HIV immune dynamics. Kybernetes 2(8), 271–283 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adimy, M., Crauste, F., Ruan, S.: Periodic oscillations in leukopoiesis models with two delays. J. Theor. Biol. 242, 288–299 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banks, H.T., Bortz, D.M.: A parameter sensitivity methodology in the context of HIV delay equation models. J. Math. Biol. 50, 607–625 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge–Kutta formulas. Appl. Math. Lett. 2, 321–325 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Callaway, D.S., Perelson, A.S.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 1, 29–64 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, S.-S., Cheng, C.-Y., Takeuchi, Y.: Stability analysis in delayed within-host viral dynamics with both viral and cellular infections. J. Math. Anal. Appl. 442, 642–672 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, X., Cao, J., Park, J.H., Qiu, J.: Stability analysis and estimation of domain of attraction for the endemic equilibrium of an SEIQ epidemic model. Nonlinear Dyn. 87, 975–985 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciupe, M.S., Bivort, B.L., Bortz, D.M.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 1, 1–27 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165, 27–39 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Haas, G., Hosmalin, A., Hadida, F., Duntze, J., Debré, P., Autran, B.: Dynamics of HIV variants and specific cytotoxic T-cell recognition in nonprogressors and progressors. Immunol. Lett. 57, 63–68 (1997)CrossRefGoogle Scholar
  11. 11.
    Lipovan, O.: A retarded Gronwall-like inequality and its applications. J. Math. Anal. Appl. 252, 389–401 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, M.Y., Shu, H.: Global dynamics of an in-host viral model with intracellular delay. Bull. Math. Biol. 72, 1492–1505 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, S., Wang, L.: Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Math. Biosci. Eng. 7, 675–685 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Manseur, S., Attalah, K., Cherruault, Y.: Optimal control of chemotherapy of HIV model using the coupled Adomian/Alienor methods. Kybernetes 34, 1200–1210 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Manseur, S., Messaoudi, N., Cherruault, Y.: Parameter identification of an HIV model by the combined Adomian/Alienor method. Kybernetes 35, 1725–1734 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Monica, C., Pitchaimani, M.: Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays. Nonlinear Anal. Real World Appl. 27, 55–69 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nowak, M.A., Bangham, C.R.: Population dynamics of immune responses to persistent viruses. Science 5258, 74–79 (1996)CrossRefGoogle Scholar
  18. 18.
    Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235, 98–109 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 1, 28–36 (2002)CrossRefGoogle Scholar
  20. 20.
    Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Continuous Dyn. Syst. Ser. B 2, 511–524 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.Department of MathematicsPurdue University NorthwestHammondUSA

Personalised recommendations