Advertisement

Journal of Applied Mathematics and Computing

, Volume 59, Issue 1–2, pp 227–243 | Cite as

Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates

  • Omar Abu ArqubEmail author
Original Research

Abstract

In this article, we propose and analyze an efficient computational algorithm for the numerical solutions of singular Fredholm time-fractional partial integrodifferential equations subject to Dirichlet functions type. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n-term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds under some hypotheses which provide the theoretical basis of the proposed algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such integrodifferential equations.

Keywords

Reproducing kernel algorithm Fractional calculus theory Singular partial integrodifferential equation Fredholm operator 

Notes

Acknowledgements

The author would like to express their gratitude to the unknown referees for carefully reading the paper and their helpful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  3. 3.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  4. 4.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)zbMATHGoogle Scholar
  5. 5.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  6. 6.
    Arshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Part. Differ. Equ. 33, 1565–1581 (2017).  https://doi.org/10.1002/num.22153 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Rostami, Y., Maleknejad, K.: Numerical solution of partial integro-differential equations by using projection method. Mediterr. J. Math. 14, 113 (2017).  https://doi.org/10.1007/s00009-017-0904-z MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, L., Li, X.F., Zhao, Y., Duan, X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math Appl. 62, 1127–1134 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. vol. 2014, Article ID 431965, 5 pages (2014).  https://doi.org/10.1155/2014/431965
  10. 10.
    Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math Appl. 52, 459–470 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. vol. 2014, Article ID 162896, 7 pages (2014).  https://doi.org/10.1155/2014/162896
  12. 12.
    Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017).  https://doi.org/10.1186/s13662-017-1085-6 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, Y., Zhu, L.: SCW method for solving the fractional integro-differential equations with a weakly singular kernel. Appl. Math. Comput. 275, 72–80 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Abu Arqub, O., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ray, S.S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math Appl. 71, 859–868 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process 83, 2285–2286 (2003)CrossRefGoogle Scholar
  19. 19.
    Zaremba, S.: L’equation biharminique et une class remarquable defonctionsfoundamentals harmoniques. Bull. Int. l’Acad. Sci. Cracovie 39, 147–196 (1907)Google Scholar
  20. 20.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York (2009)zbMATHGoogle Scholar
  22. 22.
    Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer Academic Publishers, Boston (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)zbMATHGoogle Scholar
  24. 24.
    Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. Hutchinson Ross, Stroudsburg (1982)Google Scholar
  25. 25.
    Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Applied Mathematics Letters 19, 808–813 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yang, L.H., Lin, Y.: Reproducing kernel methods for solving linear initial-boundary-value problems. Electron. J. Differ. Equ. 2008, 1–11 (2008)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Part. Differ. Equ. (2017).  https://doi.org/10.1002/num.22209 zbMATHGoogle Scholar
  29. 29.
    Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math Appl. 73, 1243–1261 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl. (2017).  https://doi.org/10.1007/s00521-017-2845-7 Google Scholar
  31. 31.
    Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl. Math. Comput. 240, 229–239 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283–3302 (2016)CrossRefzbMATHGoogle Scholar
  36. 36.
    Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 21, 7191–7206 (2017).  https://doi.org/10.1007/s00500-016-2262-3 CrossRefzbMATHGoogle Scholar
  37. 37.
    Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput. Appl. (2015) 1–20.  https://doi.org/10.1007/s00521-015-2110-x
  38. 38.
    Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fund. Inf. 146, 231–254 (2016)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Abu Arqub, O., Maayah, B.: Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural Comput. Appl. (2016).  https://doi.org/10.1007/s00521-016-2484-4 Google Scholar
  40. 40.
    Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow (2017).  https://doi.org/10.1108/HFF-07-2016-0278 zbMATHGoogle Scholar
  41. 41.
    Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017, In press) Google Scholar
  42. 42.
    Abu, O.: Arqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Part. Differ. Equ. (2017).  https://doi.org/10.1002/num.22236 Google Scholar
  43. 43.
    Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Part. Differ. Equ. 30, 289–300 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceAl-Balqa Applied UniversitySaltJordan

Personalised recommendations