Advertisement

Effect of one redundant parity-check equation on the stopping distance

  • Zahra Ferdosi
  • Farhad Rahmati
  • Mohammad H. TadayonEmail author
Original Research
  • 52 Downloads

Abstract

In this paper, we attempt to correct remaining erasures in the case of an iterative decoding failure. Stopping set plays the most important role in the code’s performance over binary erasure channel (BEC) under iterative decoding. The elimination of the stopping sets is one of the techniques that can be applied on the parity-check matrix of the codes for improving their performance in the low BER region. Although the problem is well-studied and many solutions are already known, a new low-complexity algorithm would be an important contribution. We present a modified decoding algorithm for array LDPC codes C(mq) over BEC with the column weight m and row weight q where \(m<q\). Our proposed technique provides a step towards improving the decoding results and is compatible with practical implementation constraints. Our results substantiate theoretical analysis for array LDPC codes.

Keywords

Array LDPC codes Stopping set Stopping distance Iterative decoding Binary erasure channel (BEC) 

References

  1. 1.
    Fan, J.L.: Array codes as low-density parity-check codes. In: Proceedings of the 2nd International Symposium on Turbo Codes and Related Topics, Brest, France (2000)Google Scholar
  2. 2.
    Esmaeili, M., Tadayon, M.H., Gulliver, T.A.: More on the Stopping and Minimum Distances of Array Codes. IEEE Trans. Commun. 59(3), 750–757 (2011)CrossRefGoogle Scholar
  3. 3.
    Rosnes, E., Ambroze, M.A., Tomlinson, M.: On the minimum/stopping distance of array low-density parity-check codes. IEEE Trans. Inf. Theory 60(9), 5204–5214 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Rosnes, E., Ytrehus, O.: An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices. IEEE Trans. Inf. Theory 55(9), 4167–4178 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Di, C., Proietti, D., Telatar, I.E., Richardson, T.J., Urbanke, R.L.: Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inf. Theory 48(6), 1570–1579 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jaldn, J., Ottersten, B.: On the complexity of sphere decoding in digital communications. IEEE Trans. Signal Process. 53(4), 1474–1484 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: Symmetrical constructions for regular girth-8 QC-LDPC codes. IEEE Trans. Commun. 65(1), 14–22 (2017)Google Scholar
  8. 8.
    Park, H., Hong, S., No, J.S., Shin, D.J.: Construction of high-rate regular quasi-cyclic LDPC codes based on cyclic difference families. IEEE Trans. Commun. 61(8), 3108–3113 (2013)CrossRefGoogle Scholar
  9. 9.
    Tasdighi, A., Sadeghi, M.R.: On advisability of designing short length QC-LDPC codes using perfect difference families. arXiv preprint arXiv:1701.06218 (2017)
  10. 10.
    Baldi, M., Bianchi, M., Cancellieri, G., Chiaraluce, F., Kløve, T.: On the generator matrix of array LDPC codes. In: Proceedings of SoftCOM 2012, Split, Croatia, vol. 5 (2012)Google Scholar
  11. 11.
    Axler, Sheldon Jay: Linear Algebra Done Right. Springer, New York (2014)zbMATHGoogle Scholar
  12. 12.
    Tian, T., Jones, C., Villasenor, J.D., Wesel, R.D.: Construction of irregular LDPC codes with low error floors. In: IEEE International Conference on Communications, 2003. ICC’03, vol. 5, pp. 3125–3129 (2003)Google Scholar
  13. 13.
    Pishro-Nik, H., Fekri, F.: On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory 50(3), 439–454 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vasić, B., Chilappagari, S.K., Nguyen, D.V., Planjery, S.K.: Trapping set ontology, In 47th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2009, pp. 1–7. IEEE (2009)Google Scholar
  15. 15.
    Wang, Chih-Chun, Kulkarni, Sanjeev R., Vincent Poor, H.: Finding all small error-prone substructures in LDPC codes. IEEE Trans. Inf. Theory 55(5), 1976–1999 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  • Zahra Ferdosi
    • 1
  • Farhad Rahmati
    • 1
  • Mohammad H. Tadayon
    • 2
    Email author
  1. 1.Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran
  2. 2.Iran Telecommunication Research Center (ITRC)TehranIran

Personalised recommendations