Isospectral nearly Kähler manifolds

Article
  • 35 Downloads

Abstract

We give a systematic way to construct almost conjugate pairs of finite subgroups of \(\mathrm {Spin}(2n+1)\) and \({{\mathrm{Pin}}}(n)\) for \(n\in {\mathbb {N}}\) sufficiently large. As a geometric application, we give an infinite family of pairs \(M_1^{d_n}\) and \(M_2^{d_n}\) of nearly Kähler manifolds that are isospectral for the Dirac and Laplace operator with increasing dimensions \(d_n>6\). We provide additionally a computation of the volume of (locally) homogeneous six dimensional nearly Kähler manifolds and investigate the existence of Sunada pairs in this dimension.

Keywords

Isospectral Nearly Kähler manifolds Dirac and Laplace operator 

Mathematics Subject Classification

53 

Notes

Acknowledgements

The author wishes to thank M. Larsen and T. Finis for discussions concerning results in [17, 18], as well as A. Adem for pointing out a reference for the group cohomological facts used in the proof of Theorem 2.10. He also wants to thank N. Ginoux for several corrections in the previous versions of this paper and G. Weingart for providing help with the algorithmic computations that yield Example 2.11 and his hospitality during the author’s stay in Cuernavaca.

This work was supported by the Max-Planck-institut für Mathematik in den Naturwissenchaften.

References

  1. 1.
    Ammann, B., Bär, C.: The Dirac operator on nilmanifolds and collapsing circle bundles. Ann. Glob. Anal. Geom. 16, 221–253 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adem, A., Milgram, R.: Cohomology of Finite Groups, vol. 309. Springer, Berlin (2003)MATHGoogle Scholar
  3. 3.
    Blasius, D.: On multiplicities for \(\text{ SL }(n)\). Isr. J. Math. 88(1–3), 237–251 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Butruille, J.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27, 201–225 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Butruille, J.: Homogeneous nearly Kähler manifolds. In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, pp. 399–423. EMS, Zürich (2010)Google Scholar
  6. 6.
    Cabrera, F., Dávila, J.C.G.: Homogeneous nearly Kähler manifolds. arXiv:1006.2636 [math.DG]
  7. 7.
    Cabrera, F., Dávila, J.C.G.: Homogeneous nearly Kähler manifolds. Ann. Glob. Anal. Geom. 42(2), 147–170 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Charbonneau, B., Harland, D.: Deformations of nearly Kähler instantons. Commun. Math. Phys. 348, 959–990 (2016)CrossRefMATHGoogle Scholar
  9. 9.
    Conway, J., Sloane, N.J.: Four dimensional lattices with the same theta series. Int. Math. Res. Not. 4, 93–96 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cortés, V., Vásquez, J.J.: Locally homogeneous nearly Kähler manifolds. Ann. Glob. Anal. Geom. 48, 269–294 (2015)CrossRefMATHGoogle Scholar
  11. 11.
    Figueroa-O’Farrill, J., de Medeiros, P.: Half BPS M2-brane orbifolds. Adv. Theor. Math. Phys. 16(5), 1349–1409 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gerard, E.T.F.: A polarization identity for multilinear maps. Indag. Math. 25, 468–474 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gilkey, P.: Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem. Mathematics Lecture Series, vol. 11. Publish or Perish, Wilmington (1984)MATHGoogle Scholar
  14. 14.
    Gordon, C.: Sunada’s Isospectrality Technique: Two Decades Later. Spectral Analysis in Geometry and Number Theory, pp. 45–58. Amer. Math. Soc., Providence (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Gray, A.: Nearly Kähler manifolds. J. Differ. Geom. 4, 283–309 (1970)CrossRefMATHGoogle Scholar
  16. 16.
    Gray, A.: Weak holonomy groups. Math. Z. 123, 290–300 (1971)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Larsen, M.: On the conjugacy of element-conjugate homomorphisms. Isr. J. Math. 88(1–3), 253–277 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Larsen, M.: On the conjugacy of element-conjugate homomorphisms II. Q. J. Math. Oxf. Ser. (2) 47(185), 73–85 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ledger, A., Obata, M.: Affine and Riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Macdonald, I.G.: The volume of a compact Lie group. Invent. Math. 56, 93–95 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Moroianu, A., Semmelmann, U.: The Hermitian Laplace operator on nearly Kähler manifolds. Commun. Math. Phys. 294, 251–272 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Nagy, P.A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6, 481–504 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Pesce, H.: Une réciproque générique du théoréme Sunada. Compos. Math. 109(3), 357–365 (1997)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rossetti, J., Schüth, D., Weinlandt, M.: Isospectral orbifolds with different maximal isotropy orders. Ann. Glob. Anal. Geom. 34, 351–366 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer, New York (2001)CrossRefMATHGoogle Scholar
  26. 26.
    Schacher, M.: Double covers of the symmetric groups as Galois groups over number fields. J. Algebra 116(1), 243–250 (1988)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Shankhar, K.: Isometry groups of homogeneous spaces with positive sectional curvature. Differ. Geom. Appl. 14, 57–78 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. (2) 121(1), 169–185 (1985)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tojo, K.: Kähler C-spaces and k-symmetric spaces. Osaka J. Math. 34, 803–820 (1997)MathSciNetMATHGoogle Scholar
  30. 30.
    Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres and Moduli. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  31. 31.
    Wilson, R.: The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251. Springer, Berlin (2000)Google Scholar
  32. 32.
    Wolf, J.A.: Isospectrality for Spherical Space Forms, Results in Mathematics. Birkhäuser, Basel (2001)MATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations