Advertisement

Prognostic significance of low pre-transplant skeletal muscle mass on survival outcomes in patients undergoing hematopoietic stem cell transplantation

  • Kazuki Sakatoku
  • Ayumu ItoEmail author
  • Kinuko Tajima
  • Kyosuke Yamaguchi
  • Masatomo Kuno
  • Noriko Aoki
  • Takashi Tanaka
  • Saiko Kurosawa
  • Yoshihiro Inamoto
  • Sung-Won Kim
  • Takahiro Fukuda
Original Article

Abstract

Little is known about the prognostic significance of muscle loss for allogeneic hematopoietic stem cell transplantation (allo-HCT). We retrospectively analyzed consecutive patients who received allo-HCT from 2013 to 2015. All patients underwent computed tomography (CT) imaging and bioelectrical impedance analysis (BIA) within 30 days before allo-HCT. Skeletal muscle area (cm2) at the third lumbar vertebra level on CT imaging and skeletal muscle mass (kg) measured by BIA were normalized by height in meters squared (m2) to calculate the skeletal muscle area index (SMI) and skeletal muscle mass index (SMMI). SMI and SMMI were significantly correlated (r = 0.744; P < 0.001). The cumulative incidence of 1-year non-relapse mortality (NRM) was significantly higher in patients with low SMI than high SMI (17% versus 0%, respectively; P = 0.023). Overall survival was shorter in patients with low SMI than high SMI (56% versus 93%, respectively; P < 0.001). In univariate analysis, low SMI was associated with increased risk of NRM (HR 7.46; 95% CI 1.05–52.98; P = 0.044), and in multivariate analysis it was associated with higher overall mortality (HR 5.35; 95% CI 1.71–16.72; P = 0.004). These results suggest that low muscle mass is an independent predictor of mortality after allo-HCT.

Keywords

Skeletal muscle mass Allogenic stem cell transplantation Infection Non-relapse mortality 

Notes

Acknowledgements

The authors thank the nurses and staff of the transplantation ward at our institution.

Compliance with ethical standards

Conflict of interest

No potential conflict of interest is reported by the authors.

Supplementary material

12185_2019_2773_MOESM1_ESM.docx (173 kb)
Supplementary material 1 (DOCX 172 kb)

References

  1. 1.
    Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9.CrossRefGoogle Scholar
  2. 2.
    Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MA, den Braver NR, Berkhof J, Langius JA, et al. Loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal cancer. J Clin Oncol. 2016;34:1339–44.CrossRefGoogle Scholar
  3. 3.
    Lanic H, Kraut-Tauzia J, Modzelewski R, Clatot F, Mareschal S, Picquenot JM, et al. Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk Lymphoma. 2014;55:817–23.CrossRefGoogle Scholar
  4. 4.
    Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.CrossRefGoogle Scholar
  5. 5.
    Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.CrossRefGoogle Scholar
  6. 6.
    Armenian SH, Xiao M, Berano Teh J, Lee B, Chang HA, Mascarenhas K, et al. Impact of sarcopenia on adverse outcomes after allogeneic hematopoietic cell transplantation. J Natl Cancer Inst. 2019;111(8):837–844.CrossRefGoogle Scholar
  7. 7.
    Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 1985;2004(97):2333–8.Google Scholar
  8. 8.
    Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc. 2008;56:1710–5.CrossRefGoogle Scholar
  9. 9.
    Armand P, Gibson CJ, Cutler C, Ho VT, Koreth J, Alyea EP, et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood. 2012;120:905–13.CrossRefGoogle Scholar
  10. 10.
    Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33.CrossRefGoogle Scholar
  11. 11.
    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefGoogle Scholar
  12. 12.
    New criteria for ‘obesity disease’ in Japan. Circ J. 2002;66:987–92.CrossRefGoogle Scholar
  13. 13.
    Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96:895–901.CrossRefGoogle Scholar
  14. 14.
    Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10(166–73):73.e1.Google Scholar
  15. 15.
    Iritani S, Imai K, Takai K, Hanai T, Ideta T, Miyazaki T, et al. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol. 2015;50:323–32.CrossRefGoogle Scholar
  16. 16.
    Sakuma K, Aoi W, Yamaguchi A. Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch. 2015;467:213–29.CrossRefGoogle Scholar
  17. 17.
    Tamandl D, Paireder M, Asari R, Baltzer PA, Schoppmann SF, Ba-Ssalamah A. Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer. Eur Radiol. 2016;26:1359–67.CrossRefGoogle Scholar
  18. 18.
    McSorley ST, Black DH, Horgan PG, McMillan DC. The relationship between tumour stage, systemic inflammation, body composition and survival in patients with colorectal cancer. Clin Nutr. 2018;37:1279–85.CrossRefGoogle Scholar
  19. 19.
    Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 2016;7:458–66.CrossRefGoogle Scholar
  20. 20.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.CrossRefGoogle Scholar
  21. 21.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.CrossRefGoogle Scholar
  22. 22.
    Jensen B, Moritoyo T, Kaufer-Horwitz M, Peine S, Norman K, Maisch MJ, et al. Ethnic differences in fat and muscle mass and their implication for interpretation of bioelectrical impedance vector analysis. Appl Physiol Nutr Metab. 2019;44:619–26.CrossRefGoogle Scholar
  23. 23.
    Binder EF, Yarasheski KE, Steger-May K, Sinacore DR, Brown M, Schechtman KB, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci. 2005;60:1425–31.CrossRefGoogle Scholar
  24. 24.
    Suetta C, Andersen JL, Dalgas U, Berget J, Koskinen S, Aagaard P, et al. Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients. J Appl Physiol. 1985;2008(105):180–6.Google Scholar
  25. 25.
    Kemmler W, von Stengel S, Engelke K, Haberle L, Mayhew JL, Kalender WA. Exercise, body composition, and functional ability: a randomized controlled trial. Am J Prev Med. 2010;38:279–87.CrossRefGoogle Scholar
  26. 26.
    Hojan K, Milecki P, Molinska-Glura M, Roszak A, Leszczynski P. Effect of physical activity on bone strength and body composition in breast cancer premenopausal women during endocrine therapy. Eur J Phys Rehabil Med. 2013;49:331–9.PubMedGoogle Scholar
  27. 27.
    Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28:340–7.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Hematology 2019

Authors and Affiliations

  • Kazuki Sakatoku
    • 1
  • Ayumu Ito
    • 1
    Email author
  • Kinuko Tajima
    • 1
  • Kyosuke Yamaguchi
    • 1
  • Masatomo Kuno
    • 1
  • Noriko Aoki
    • 2
  • Takashi Tanaka
    • 1
  • Saiko Kurosawa
    • 1
  • Yoshihiro Inamoto
    • 1
  • Sung-Won Kim
    • 1
  • Takahiro Fukuda
    • 1
  1. 1.Department of Hematopoietic Stem Cell TransplantationNational Cancer Center HospitalTokyoJapan
  2. 2.Department of Nutritional ManagementNational Cancer Center HospitalTokyoJapan

Personalised recommendations