Advertisement

Mutational profiling in myelofibrosis: implications for management

  • Prithviraj Bose
  • Srdan VerstovsekEmail author
Progress in Hematology Progress in elucidation of molecular pathophysiology and its application to therapeutic decisions of MPNs

Abstract

Mutational profiling, usually by targeted next-generation sequencing, is increasingly performed on patients with myeloproliferative neoplasm-associated myelofibrosis (MF), whether primary (PMF) or post-polycythemia vera/essential thrombocythemia (post-PV/ET MF). “Driver” mutations in JAK2, MPL and indels in CALR underlie the vast majority of cases of PMF and post-ET MF; the remainder (≈ 10%) lack identifiable driver mutations, but other clonal markers are usually detectable. Nearly all patients with post-PV MF carry activating JAK2 mutations. In both PMF and post-ET MF, type 1/-like CALR mutations confer a favorable prognosis. Since both type 1/-like and type 2/-like CALR mutations have essentially the same functional consequence, this is a subject of intense research. Additional, “non-driver” mutations, mostly affecting genes encoding epigenetic modifiers or spliceosome components, e.g., ASXL1, EZH2, TET2, DNMT3A, SRSF2 and U2AF1, are frequently found; some of these are associated with inferior survival and have been incorporated into prognostic models. Some mutations, e.g., IDH1/2, are relatively infrequent in chronic phase but are substantially more common in blast phase, and are now therapeutically targetable. While mutational information does not currently influence choice of drug therapy in chronic-phase MF, the presence of a “high molecular risk” genotype is now routinely taken into account for transplant decision-making.

Keywords

Mutations Myelofibrosis JAK–STAT Epigenetic Splicing 

Notes

Acknowledgements

This work was supported, in part, by the MD Anderson Cancer Center support grant P30 CA016672 from the National Cancer Institute (National Institutes of Health).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts relevant to this manuscript.

References

  1. 1.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127:333–42.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–32.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD Jr, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116:988–92.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med. 2010;363:1189–90.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Guglielmelli P, Biamonte F, Rotunno G, Artusi V, Artuso L, Bernardis I, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood. 2014;123:2157–60.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol. 2013;161:508–16.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tefferi A, Finke CM, Lasho TL, Hanson CA, Ketterling RP, Gangat N, et al. U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions. Leukemia. 2018;32:2274.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372:601–12.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nangalia J, Nice FL, Wedge DC, Godfrey AL, Grinfeld J, Thakker C, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015;100:e438–42.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol. 2012;19:754–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–95.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41:446–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tefferi A, Lasho TL, Huang J, Finke C, Mesa RA, Li CY, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008;22:756–61.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Guglielmelli P, Barosi G, Specchia G, Rambaldi A, Lo Coco F, Antonioli E, et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood. 2009;114:1477–83.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rozovski U, Verstovsek S, Manshouri T, Dembitz V, Bozinovic K, Newberry K, et al. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica. 2017;102:79–84.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Barosi G, Klersy C, Villani L, Bonetti E, Catarsi P, Poletto V, et al. JAK2(V617F) allele burden 50% is associated with response to ruxolitinib in persons with MPN-associated myelofibrosis and splenomegaly requiring therapy. Leukemia. 2016;30:1772–5.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Maekawa T, Osawa Y, Izumi T, Nagao S, Takano K, Okada Y, et al. Myeloproliferative leukemia protein activation directly induces fibrocyte differentiation to cause myelofibrosis. Leukemia. 2017;31:2709.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127:1317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Alvarez-Larran A, Pereira A, Guglielmelli P, Hernandez-Boluda JC, Arellano-Rodrigo E, Ferrer-Marin F, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016;101:926–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Finazzi MC, Carobbio A, Cervantes F, Isola IM, Vannucchi AM, Guglielmelli P, et al. CALR mutation, MPL mutation and triple negativity identify patients with the lowest vascular risk in primary myelofibrosis. Leukemia. 2015;29:1209–10.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Pardanani A, Guglielmelli P, Lasho TL, Pancrazzi A, Finke CM, Vannucchi AM, et al. Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients. Leukemia. 2011;25:1834–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13 ; quiz 2615.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tefferi A, Lasho TL, Finke C, Belachew AA, Wassie EA, Ketterling RP, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28:1568–70.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tefferi A, Lasho TL, Tischer A, Wassie EA, Finke CM, Belachew AA, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124:2465–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Guglielmelli P, Rotunno G, Fanelli T, Pacilli A, Brogi G, Calabresi L, et al. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J. 2015;5:e360.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tefferi A, Nicolosi M, Mudireddy M, Szuber N, Finke CM, Lasho TL, et al. Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN alliance study of 1,095 patients. Am J Hematol. 2018;93:348–55.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Passamonti F, Mora B, Giorgino T, Guglielmelli P, Cazzola M, Maffioli M, et al. Driver mutations’ effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia. 2017;31:970–3.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Rotunno G, Pacilli A, Artusi V, Rumi E, Maffioli M, Delaini F, et al. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group. Am J Hematol. 2016;91:681–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28:1804–10.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28:1494–500.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2017;36:310.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Caramazza D, Begna KH, Gangat N, Vaidya R, Siragusa S, Van Dyke DL, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25:82–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tefferi A, Nicolosi M, Mudireddy M, Lasho TL, Gangat N, Begna KH, et al. Revised cytogenetic risk stratification in primary myelofibrosis: analysis based on 1002 informative patients. Leukemia. 2018;32:1189–99.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nicolosi M, Mudireddy M, Lasho TL, Hanson CA, Ketterling RP, Gangat N, et al. Sex and degree of severity influence the prognostic impact of anemia in primary myelofibrosis: analysis based on 1109 consecutive patients. Leukemia. 2018;32:1254–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70 + Version 2.0: mutation and karyotype-enhanced International Prognostic Scoring System for primary myelofibrosis. J Clin Oncol. 2018;36:1769.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Mudireddy M, Bartalucci N, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32:1631.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kuykendall AT, Talati C, Padron E, Sweet K, Sallman D, List AF, et al. Genetically inspired prognostic scoring system (GIPSS) outperforms dynamic International Prognostic Scoring System (DIPSS) in myelofibrosis patients. Am J Hematol. 2019;94:87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hernandez-Boluda JC, Pereira A, Gomez M, Boque C, Ferrer-Marin F, Raya JM, et al. The International Prognostic Scoring System does not accurately discriminate different risk categories in patients with post-essential thrombocythemia and post-polycythemia vera myelofibrosis. Haematologica. 2014;99:e55–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Masarova L, Bose P, Daver N, Pemmaraju N, Newberry KJ, Manshouri T, et al. Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis. Leuk Res. 2017;59:110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cervantes F, Dupriez B, Passamonti F, Vannucchi AM, Morra E, Reilly JT, et al. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol. 2012;30:2981–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Szuber N, Mudireddy M, Nicolosi M, Penna D, Vallapureddy RR, Lasho TL, et al. 3023 Mayo Clinic patients with myeloproliferative neoplasms: risk-stratified comparison of survival and outcomes data among disease subgroups. Mayo Clin Proc. 2019;94:599–610.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hernandez-Boluda JC, Pereira A, Correa JG, Alvarez-Larran A, Ferrer-Marin F, Raya JM, et al. Performance of the myelofibrosis secondary to PV and ET-prognostic model (MYSEC-PM) in a series of 262 patients from the Spanish registry of myelofibrosis. Leukemia. 2018;32:553–5.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mesa R, Jamieson C, Bhatia R, Deininger MW, Gerds AT, Gojo I, et al. Myeloproliferative neoplasms, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016;14:1572–611.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kroger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ali H, Aldoss I, Yang D, Mokhtari S, Khaled S, Aribi A, et al. MIPSS70 + v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv. 2019;3:83–95.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gagelmann N, Ditschkowski M, Bogdanov R, Bredin S, Robin M, Cassinat B, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:2233–42.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126:790–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Newberry KJ, Patel K, Masarova L, Luthra R, Manshouri T, Jabbour E, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130:1125–31.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E5401–10.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.CrossRefGoogle Scholar
  78. 78.
    Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007;110:375–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362:369–70.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. P53 lesions in leukemic transformation. N Engl J Med. 2011;364:488–90.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130:722–31.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375:2023–36.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bose P, Verstovsek S, Naqvi K, Jabbour EJ, DiNardo CD, Alvarado Y et al. Phase 1/2 study of ruxolitinib (RUX) plus decitabine (DAC) in patients (PTS) with post-myeloproliferative neoplasm acute myeloid leukemia (post-MPN AML). Haemasphere. 2019;3(suppl 1):PF673.Google Scholar
  87. 87.
    Rampal RK, Mascarenhas J, Kosiorek HE, Bhave R, Hexner EO, Wang ES, et al. Efficacy of combined ruxolitinib and decitabine in patients with accelerated and blast-phase myeloproliferative neoplasms: results of a phase II study (MPN-RC 109 trial). Blood. 2018;132:3027.CrossRefGoogle Scholar
  88. 88.
    Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24:497–504.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Japanese Society of Hematology 2019

Authors and Affiliations

  1. 1.Department of LeukemiaUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations