Advertisement

International Journal of Hematology

, Volume 110, Issue 1, pp 30–38 | Cite as

HLA-haploidentical stem cell transplantation using posttransplant cyclophosphamide

  • Junichi SugitaEmail author
Progress in Hematology Recent progress in allogeneic stem cell transplantation using alternative stem cell sources

Abstract

HLA-haploidentical stem cell transplantation using posttransplant cyclophosphamide has spread rapidly worldwide. This strategy was initially developed in the setting of bone marrow transplantation following nonmyeloablative conditioning. Recently, peripheral blood stem cell grafts and/or myeloablative conditioning regimen have been widely used. In Japan, prospective, multicenter, phase II studies have been conducted by the Japan Study Group for Cell Therapy and Transplantation to evaluate the safety and efficacy of HLA-haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide (PTCy-haploPBSCT). In the first such study (JSCT Haplo 13 study), we demonstrated that PTCy-haploPBSCT after busulfan-based reduced-intensity conditioning (RIC) enables stable donor engraftment and low incidences of both acute and chronic graft-versus-host disease (GVHD). In the second (JSCT Haplo 14 study), we showed that both myeloablative conditioning (MAC) and RIC are valid options for PTCy-haploPBSCT. Emerging evidence, including our findings, suggests that donor type (HLA-haploidentical donor versus HLA-matched related or unrelated donor) may no longer be a significant predictor of transplant outcome.

Keywords

HLA-haploidentical transplantation Posttransplant cyclophosphamide 

Notes

Acknowledgements

This work was supported by the grant from Regional Medicine Research Foundation (Tochigi, Japan), North Japan Hematology Study Group (NJHSG), and Japan Agency for Medical Research and Development (AMED, JP17ek0510012).

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. 1.
    Beatty PG, Clift RA, Mickelson EM, Nisperos BB, Flournoy N, Martin PJ, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313:765–71.CrossRefGoogle Scholar
  2. 2.
    Powles RL, Morgenstern GR, Kay HE, McElwain TJ, Clink HM, Dady PJ, et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet. 1983;1:612–5.CrossRefGoogle Scholar
  3. 3.
    Anasetti C, Amos D, Beatty PG, Appelbaum FR, Bensinger W, Buckner CD, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.CrossRefGoogle Scholar
  4. 4.
    Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.CrossRefGoogle Scholar
  5. 5.
    Lu D-P, Dong L, Wu T, Huang X-J, Zhang M-J, Han W, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107:3065–73.CrossRefGoogle Scholar
  6. 6.
    Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24.CrossRefGoogle Scholar
  7. 7.
    Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.CrossRefGoogle Scholar
  8. 8.
    McCurdy SR, Kanakry JA, Showel MM, Tsai H-L, Bolaños-Meade J, Rosner GL, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31.CrossRefGoogle Scholar
  9. 9.
    Lorentino F, Labopin M, Fleischhauer K, Ciceri F, Mueller CR, Ruggeri A, et al. The impact of HLA matching on outcomes of unmanipulated haploidentical HSCT is modulated by GVHD prophylaxis. Blood Adv. 2017;1:669–80.CrossRefGoogle Scholar
  10. 10.
    Raiola AM, Risitano A, Sacchi N, Giannoni L, Signori A, Aquino S, et al. Impact of HLA disparity in haploidentical bone marrow transplantation followed by high-dose cyclophosphamide. Biol Blood Marrow Transpl. 2018;24:119–26.CrossRefGoogle Scholar
  11. 11.
    Ciurea SO, Shah MV, Saliba RM, Gaballa S, Kongtim P, Rondon G, et al. Haploidentical transplantation for older patients with acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transpl. 2018;24:1232–6.CrossRefGoogle Scholar
  12. 12.
    Elmariah H, Kasamon YL, Zahurak M, Macfarlane KW, Tucker N, Rosner GL, et al. Haploidentical bone marrow transplantation with post-transplant cyclophosphamide using non-first-degree related donors. Biol Blood Marrow Transpl. 2018;24:1099–102.CrossRefGoogle Scholar
  13. 13.
    Shimoni A, Labopin M, Lorentino F, et al. Killer cell immunoglobulin-like receptor ligand mismatching and outcome after haploidentical transplantation with post-transplant cyclophosphamide. Leukemia. 2019;33:230–9.CrossRefGoogle Scholar
  14. 14.
    Torío A, Pascual MJ, Vidales I, Ortiz M, Caballero A, Heiniger AI. Donor selection based on killer cell immunoglobulin-like receptor (KIR) genotype may improve outcome after T-cell-replete haploidentical transplantation. Transpl Proc. 2018;50:679–82.CrossRefGoogle Scholar
  15. 15.
    Wanquet A, Bramanti S, Harbi S, Fürst S, Legrand F, Faucher C, et al. Killer cell immunoglobulin-like receptor-ligand mismatch in donor versus recipient direction provides better graft-versus-tumor effect in patients with hematologic malignancies undergoing allogeneic T cell-replete haploidentical transplantation followed by post-transplant cyclophosphamide. Biol Blood Marrow Transpl. 2018;24:549–54.CrossRefGoogle Scholar
  16. 16.
    Solomon SR, Aubrey MT, Zhang X, Piluso A, Freed BM, Brown S, et al. Selecting the best donor for haploidentical transplant: impact of HLA, killer cell immunoglobulin-like receptor genotyping, and other clinical variables. Biol Blood Marrow Transpl. 2018;24:789–98.CrossRefGoogle Scholar
  17. 17.
    Ciurea SO, Cao K, Fernandez-Vina M, Kongtim P, Malki MA, Fuchs E, et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus guidelines for the detection and treatment of donor-specific anti-HLA antibodies (DSA) in haploidentical hematopoietic cell transplantation. Bone Marrow Transpl. 2018;53:521–34.CrossRefGoogle Scholar
  18. 18.
    Ciurea SO, Thall PF, Milton DR, Barnes TH, Kongtim P, Carmazzi Y, et al. Complement-binding donor-specific anti-HLA antibodies and risk of primary graft failure in hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2015;21:1392–8.CrossRefGoogle Scholar
  19. 19.
    Kongtim P, Cao K, Ciurea SO. Donor specific anti-HLA antibody and risk of graft failure in haploidentical stem cell transplantation. Adv Hematol. 2016;2016:4025073-10.CrossRefGoogle Scholar
  20. 20.
    Shiratori S, Ito M, Yoneoka M, Hayasaka K, Hayase E, Iwasaki J, et al. Successful engraftment in HLA-mismatched bone marrow transplantation despite the persistence of high-level donor-specific anti-HLA-DR antibody. Transplantation. 2013;96:e34–44.CrossRefGoogle Scholar
  21. 21.
    Jagasia M, Arora M, Flowers MED, Chao NJ, McCarthy PL, Cutler CS, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119:296–307.CrossRefGoogle Scholar
  22. 22.
    Sugita J, Kawashima N, Fujisaki T, Kakihana K, Ota S, Matsuo K, et al. HLA-haploidentical peripheral blood stem cell transplantation with post-transplant cyclophosphamide after busulfan-containing reduced-intensity conditioning. Biol Blood Marrow Transpl. 2015;21:1646–52.CrossRefGoogle Scholar
  23. 23.
    Sugita J, Kagaya Y, Miyamoto T, et al. Myeloablative and reduced-intensity conditioning in HLA-haploidentical peripheral blood stem cell transplantation using post-transplant cyclophosphamide. Bone Marrow Transpl. 2019;54(3):432–41.CrossRefGoogle Scholar
  24. 24.
    Brammer JE, Khouri I, Gaballa S, Anderlini P, Tomuleasa C, Ahmed S, et al. Outcomes of haploidentical stem cell transplantation for lymphoma with melphalan-based conditioning. Biol Blood Marrow Transpl. 2016;22:493–8.CrossRefGoogle Scholar
  25. 25.
    Bacigalupo A, Dominietto A, Ghiso A, Di Grazia C, Lamparelli T, Gualandi F, et al. Unmanipulated haploidentical bone marrow transplantation and post-transplant cyclophosphamide for hematologic malignancies following a myeloablative conditioning: an update. Bone Marrow Transpl. 2015;50:S37–9.CrossRefGoogle Scholar
  26. 26.
    Solomon SR, Sizemore CA, Sanacore M, Zhang X, Brown S, Holland HK, et al. Haploidentical Transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol Blood Marrow Transpl. 2012;18:1859–66.CrossRefGoogle Scholar
  27. 27.
    Solomon SR, Sizemore CA, Sanacore M, Zhang X, Brown S, Holland HK, et al. Total body irradiation-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Biol Blood Marrow Transpl. 2015;21:1299–307.CrossRefGoogle Scholar
  28. 28.
    Jaiswal SR, Chakrabarti A, Chatterjee S, Bhargava S, Ray K, Chakrabarti S. Hemophagocytic syndrome following haploidentical peripheral blood stem cell transplantation with post-transplant cyclophosphamide. Int J Hematol. 2016;103:234–42.CrossRefGoogle Scholar
  29. 29.
    Huselton E, Slade M, Trinkaus KM, et al. Propensity score analysis of conditioning intensity in peripheral blood haploidentical hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2018;24:2047–55.CrossRefGoogle Scholar
  30. 30.
    Bashey A, Zhang M-J, McCurdy SR, St Martin A, Argall T, Anasetti C, et al. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-cell-replete haploidentical donor transplantation using post-transplant cyclophosphamide. J Clin Oncol. 2017;35:3002–9.CrossRefGoogle Scholar
  31. 31.
    Castagna L, Bramanti S, Fürst S, Giordano L, Sarina B, Crocchiolo R, et al. Tacrolimus compared with cyclosporine A after haploidentical T-cell replete transplantation with post-infusion cyclophosphamide. Bone Marrow Transpl. 2016;51:462–5.CrossRefGoogle Scholar
  32. 32.
    Esquirol A, Pascual MJ, Ortiz M, et al. Single-agent GvHD prophylaxis with tacrolimus after post-transplant high-dose cyclophosphamide is a valid option for haploidentical transplantation in adults with hematological malignancies. Bone Marrow Transpl. 2017;52:1273–9.CrossRefGoogle Scholar
  33. 33.
    Cieri N, Greco R, Crucitti L, Morelli M, Giglio F, Levati G, et al. Post-transplantation cyclophosphamide and sirolimus after haploidentical hematopoietic stem cell transplantation using a treosulfan-based myeloablative conditioning and peripheral blood stem cells. Biol Blood Marrow Transpl. 2015;21:1506–14.CrossRefGoogle Scholar
  34. 34.
    Ohata K, Aoki G, Takamatsu H, Ishiyama K, Kondo Y, Yamazaki H, et al. GVHD prophylaxis with short course MTX and tacrolimus in HLA-haploidentical hematopoietic stem cell transplantation using post-transplant high dose cyclophosphamide. Biol Blood Marrow Transpl. 2016;22:374.CrossRefGoogle Scholar
  35. 35.
    Nakamae H, Koh H, Katayama T, et al. HLA haploidentical peripheral blood stem cell transplantation using reduced dose of posttransplantation cyclophosphamide for poor-prognosis or refractory leukemia and myelodysplastic syndrome. Exp Hematol. 2015;43:921–9.CrossRefGoogle Scholar
  36. 36.
    Sawada A, Shimizu M, Isaka K, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for advanced pediatric malignancies. Pediatr Hematol Oncol. 2014;31:754–64.CrossRefGoogle Scholar
  37. 37.
    Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.CrossRefGoogle Scholar
  38. 38.
    McCurdy SR, Muth ST, Tsai H-L, et al. Early fever after haploidentical bone marrow transplantation correlates with class II HLA-mismatching and myeloablation but not outcomes. Biol Blood Marrow Transpl. 2018;24:2056–64.CrossRefGoogle Scholar
  39. 39.
    Raj RV, Hamadani M, Szabo A, et al. Peripheral blood grafts for T-cell replete haploidentical transplantation increase the incidence and severity of cytokine release syndrome. Biol Blood Marrow Transpl. 2018;24:1664–70.CrossRefGoogle Scholar
  40. 40.
    Abboud R, Keller J, Slade M, DiPersio JF, Westervelt P, Rettig MP, et al. Severe cytokine-release syndrome after T cell-replete peripheral blood haploidentical donor transplantation is associated with poor survival and anti-IL-6 therapy is safe and well tolerated. Biol Blood Marrow Transpl. 2016;22:1851–60.CrossRefGoogle Scholar
  41. 41.
    Lin C-J, Vader JM, Slade M, DiPersio JF, Westervelt P, Romee R. Cardiomyopathy in patients after posttransplant cyclophosphamide-based hematopoietic cell transplantation. Cancer. 2017;123:1800–9.CrossRefGoogle Scholar
  42. 42.
    Ruggeri A, Sun Y, Labopin M, Bacigalupo A, Lorentino F, Arcese W, et al. Post-transplant cyclophosphamide versus anti-thymocyte globulin as graft- versus-host disease prophylaxis in haploidentical transplant. Haematologica. 2017;102:401–10.CrossRefGoogle Scholar
  43. 43.
    Li Z, Labopin M, Ciceri F, Blaise D, Tischer J, Ehninger G, et al. Haploidentical transplantation outcomes for secondary acute myeloid leukemia: acute Leukemia Working Party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT) study. Am J Hematol. 2018;93:769–77.CrossRefGoogle Scholar
  44. 44.
    Ruggeri A, Labopin M, Sanz G, Piemontese S, Arcese W, Bacigalupo A, et al. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia. Leukemia. 2015;29:1891–900.CrossRefGoogle Scholar
  45. 45.
    Gauthier J, Castagna L, Garnier F, Guillaume T, Socie G, Maury S, et al. Reduced-intensity and non-myeloablative allogeneic stem cell transplantation from alternative HLA-mismatched donors for Hodgkin lymphoma: a study by the French Society of Bone Marrow Transplantation and Cellular Therapy. Bone Marrow Transpl. 2017;52:689–96.CrossRefGoogle Scholar
  46. 46.
    Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8.CrossRefGoogle Scholar
  47. 47.
    Eapen M, O’Donnell P, Brunstein CG, Wu J, Barowski K, Mendizabal A, et al. Mismatched related and unrelated donors for allogeneic hematopoietic cell transplantation for adults with hematologic malignancies. Biol Blood Marrow Transpl. 2014;20:1485–92.CrossRefGoogle Scholar
  48. 48.
    Singh H, Nikiforow S, Li S, et al. Outcomes and management strategies for graft failure after umbilical cord blood transplantation. Am J Hematol. 2014;89:1097–101.CrossRefGoogle Scholar
  49. 49.
    Ciurea SO, Zhang M-J, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.CrossRefGoogle Scholar
  50. 50.
    Ghosh N, Karmali R, Rocha V, Ahn KW, DiGilio A, Hari PN, et al. Reduced-intensity transplantation for lymphomas using haploidentical related donors versus HLA-matched sibling donors: a Center for International Blood and Marrow Transplant Research Analysis. J Clin Oncol. 2016;34:3141–9.CrossRefGoogle Scholar
  51. 51.
    Kanate AS, Mussetti A, Kharfan-Dabaja MA, Ahn KW, DiGilio A, Beitinjaneh A, et al. Reduced-intensity transplantation for lymphomas using haploidentical related donors vs HLA-matched unrelated donors. Blood. 2016;127:938–47.CrossRefGoogle Scholar
  52. 52.
    Martinez C, Gayoso J, Canals C, Finel H, Peggs K, Dominietto A, et al. Post-transplantation cyclophosphamide-based haploidentical transplantation as alternative to matched sibling or unrelated donor transplantation for Hodgkin lymphoma: a registry study of the Lymphoma Working Party of the European Society for Blood and Marrow Transplantation. J Clin Oncol. 2017;35:3425–32.CrossRefGoogle Scholar
  53. 53.
    Brissot E, Labopin M, Ehninger G, et al. Haploidentical versus unrelated allogeneic stem cell transplantation for relapsed/refractory acute myeloid leukemia: a report on 1578 patients from the Acute Leukemia Working Party of the EBMT. Haematologica. 2019;104:524–32.CrossRefGoogle Scholar
  54. 54.
    Gu Z, Wang L, Yuan L, et al. Similar outcomes after haploidentical transplantation with post-transplant cyclophosphamide versus HLA-matched transplantation: a meta-analysis of case-control studies. Oncotarget. 2017;8:63574–86.Google Scholar

Copyright information

© Japanese Society of Hematology 2019

Authors and Affiliations

  1. 1.Department of Hematology, Faculty of MedicineHokkaido UniversitySapporoJapan

Personalised recommendations