International Journal of Hematology

, Volume 108, Issue 3, pp 239–245 | Cite as

Safety of intra-articular transplantation of lentivirally transduced mesenchymal stromal cells for haemophilic arthropathy in a non-human primate

  • Tsukasa OhmoriEmail author
  • Hiroaki Mizukami
  • Yuko Katakai
  • Sho Kawai
  • Hitoyasu Nakamura
  • Makoto Inoue
  • Tsugumine Shu
  • Hideharu Sugimoto
  • Yoichi Sakata
Original Article


Joint bleeding and resultant arthropathy are major determinants of quality of life in haemophilia patients. We previously developed a mesenchymal stromal cell (MSC)-based treatment approach for haemophilic arthropathy in a mouse model of haemophilia A. Here, we evaluated the long-term safety of intra-articular injection of lentivirally transduced autologous MSCs in non-human primates. Autologous bone-marrow-derived MSCs transduced with a lentiviral vector expressing coagulation factor VIII (FVIII) were injected into the left knee joint of cynomolgus monkeys. We first conducted codon optimization to increase FVIII production in the cells. Lentiviral transduction of autologous MSCs resulted in a significant increase of FVIII in the culture supernatant before transplantation. We did not find any tumour generation around the knee structure at 11–16 months after injection by magnetic resonance imaging. The proviral sequence of the simian immunodeficiency virus lentiviral vector was not detected in the heart, lungs, spleen, liver, testis, or bone marrow by real-time quantitative PCR. We confirmed the long-term safety of intra-articular injection of transduced MSCs in a non-human primate. The procedure may be an attractive therapeutic approach for joint diseases in haemophilia patients.


Cell therapy Haemophilia Lentiviral vector Arthropathy Mesenchymal stromal cells 



We acknowledge Dr. Hiroaki Shibata (Tsukuba Primate Research Center) for providing the protocol to isolate monkey MSCs.


This study was supported by the Research Program on HIV/AIDS from the Japan Agency for Medical Research and Development (AMED) under Grant Numbers JP17fk0410306h0003 and JP18fk0410017h0001.

Conflict of interest

Dr Ohmori received research support from Bayer, Dai-ichi Sankyo, Novo Nordisk, and CSL Behring outside of this study. M.I. and T.T. are employees of ID Pharma Inc. All other authors declare no competing financial interests.

Supplementary material (651 kb)
Supplementary material 1 (MOV 650 KB) (1.2 mb)
Supplementary material 2 (MOV 1195 KB) (1.3 mb)
Supplementary material 3 (MOV 1283 KB) (924 kb)
Supplementary material 4 (MOV 923 KB) (1.1 mb)
Supplementary material 5 (MOV 1100 KB)


  1. 1.
    Young G. New challenges in hemophilia: long-term outcomes and complications. Hematol Am Soc Hematol Educ Program. 2012;2012:362–8.Google Scholar
  2. 2.
    Srivastava A. Haemophilia care—beyond the treatment guidelines. Haemophilia. 2014;20(Suppl 4):4–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Marijke van den Berg H. Preventing bleeds by treatment: new era for haemophilia changing the paradigm. Haemophilia. 2016;22(Suppl 5):9–13.Google Scholar
  4. 4.
    George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017;377:2215–27.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rangarajan S, Walsh L, Lester W, Perry D, Madan B, Laffan M, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med. 2017;377:2519–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Nijdam A, Foppen W, van der Schouw YT, Mauser-Bunschoten EP, Schutgens RE, Fischer K. Long-term effects of joint bleeding before starting prophylaxis in severe haemophilia. Haemophilia. 2016;22:852–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Hanley J, McKernan A, Creagh MD, Classey S, McLaughlin P, Goddard N, et al. Guidelines for the management of acute joint bleeds and chronic synovitis in haemophilia: a United Kingdom Haemophilia Centre Doctors’ Organisation (UKHCDO) guideline. Haemophilia. 2017;23:511–20.CrossRefPubMedGoogle Scholar
  8. 8.
    Pulles AE, Mastbergen SC, Schutgens RE, Lafeber FP, van Vulpen LF. Pathophysiology of hemophilic arthropathy and potential targets for therapy. Pharmacol Res. 2017;115:192–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Ohmori T, Mizukami H, Ozawa K, Sakata Y, Nishimura S. New approaches to gene and cell therapy for hemophilia. J Thromb Haemost. 2015;13(Suppl 1):S133-42.PubMedGoogle Scholar
  10. 10.
    Kashiwakura Y, Ohmori T, Mimuro J, Yasumoto A, Ishiwata A, Sakata A, et al. Intra-articular injection of mesenchymal stem cells expressing coagulation factor ameliorates hemophilic arthropathy in factor VIII-deficient mice. J Thromb Haemost. 2012;10:1802–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Ishiwata A, Mimuro J, Kashiwakura Y, Niimura M, Takano K, Ohmori T, et al. Phenotype correction of hemophilia A mice with adeno-associated virus vectors carrying the B domain-deleted canine factor VIII gene. Thromb Res. 2006;118:627–35.CrossRefPubMedGoogle Scholar
  12. 12.
    Menzella HG. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb Cell Fact. 2011;10:15.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mimuro J, Muramatsu S, Hakamada Y, Mori K, Kikuchi J, Urabe M, et al. Recombinant adeno-associated virus vector-transduced vascular endothelial cells express the thrombomodulin transgene under the regulation of enhanced plasminogen activator inhibitor-1 promoter. Gene Ther. 2001;8:1690–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Ohmori T, Mimuro J, Takano K, Madoiwa S, Kashiwakura Y, Ishiwata A, et al. Efficient expression of a transgene in platelets using simian immunodeficiency virus-based vector harboring glycoprotein Ibalpha promoter: in vivo model for platelet-targeting gene therapy. FASEB J. 2006;20:1522–4.CrossRefPubMedGoogle Scholar
  15. 15.
    McIntosh J, Lenting PJ, Rosales C, Lee D, Rabbanian S, Raj D, et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013;121:3335–44.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ward NJ, Buckley SM, Waddington SN, Vandendriessche T, Chuah MK, Nathwani AC, et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood. 2011;117:798–807.CrossRefPubMedGoogle Scholar
  17. 17.
    Iorio A, Marchesini E, Marcucci M, Stobart K, Chan AK. Clotting factor concentrates given to prevent bleeding and bleeding-related complications in people with hemophilia A or B. Cochrane Database Syst Rev. 2011;9:CD003429.Google Scholar
  18. 18.
    Arruda VR, Doshi BS, Samelson-Jones BJ. Novel approaches to hemophilia therapy: successes and challenges. Blood. 2017;130:2251–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.CrossRefPubMedGoogle Scholar
  20. 20.
    McCormack MP, Rabbitts TH. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2004;350:913–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Cavazzana M, Six E, Lagresle-Peyrou C, Andre-Schmutz I, Hacein-Bey-Abina S. Gene therapy for X-linked severe combined immunodeficiency: where do we stand? Hum Gene Ther. 2016;27:108–16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hematti P, Hong BK, Ferguson C, Adler R, Hanawa H, Sellers S, et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. 2004;2:e423.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol. 2006;24:687–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Alton EW, Beekman JM, Boyd AC, Brand J, Carlon MS, Connolly MM, et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax. 2017;72:137–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Ikeda Y, Yonemitsu Y, Miyazaki M, Kohno R, Murakami Y, Murata T, et al. Acute toxicity study of a simian immunodeficiency virus-based lentiviral vector for retinal gene transfer in nonhuman primates. Hum Gene Ther. 2009;20:943–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Ireland H, Gay MHP, Baldomero H, De Angelis B, Baharvand H, Lowdell MW, et al. The survey on cellular and tissue-engineered therapies in Europe and neighboring Eurasian countries in 2014 and 2015. Cytotherapy. 2018;20(1):1–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Porada CD, Sanada C, Kuo CJ, Colletti E, Mandeville W, Hasenau J, et al. Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC. Exp Hematol. 2011;39:1124–35 e4.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sokal EM, Lombard CA, Roelants V, Najimi M, Varma S, Sargiacomo C, et al. Biodistribution of liver-derived mesenchymal stem cells after peripheral injection in a hemophilia A patient. Transplantation. 2017;101:1845–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Kashiwakura Y, Mimuro J, Onishi A, Iwamoto M, Madoiwa S, Fuchimoto D, et al. Porcine model of hemophilia A. PLoS One. 2012;7:e49450.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  1. 1.Department of BiochemistryJichi Medical University School of MedicineShimotsukeJapan
  2. 2.Division of Genetic Therapeutics, Center for Molecular MedicineJichi Medical UniversityShimotsukeJapan
  3. 3.The Corporation for Production and Research of Laboratory PrimatesTsukubaJapan
  4. 4.Department of RadiologyJichi Medical University School of MedicineShimotsukeJapan
  5. 5.ID Pharma Inc.TsukubaJapan
  6. 6.Jichi Medical UniversityShimotsukeJapan

Personalised recommendations