Advertisement

International Journal of Hematology

, Volume 108, Issue 3, pp 246–253 | Cite as

Association between OGG1 S326C CC genotype and elevated relapse risk in acute myeloid leukemia

  • Nanami Gotoh
  • Takayuki Saitoh
  • Noriyuki Takahashi
  • Tetsuhiro Kasamatsu
  • Yusuke Minato
  • Alkebsi Lobna
  • Tsukasa Oda
  • Takumi Hoshino
  • Toru Sakura
  • Hiroaki Shimizu
  • Makiko Takizawa
  • Hiroshi Handa
  • Akihiko Yokohama
  • Norifumi Tsukamoto
  • Hirokazu Murakami
Original Article
  • 126 Downloads

Abstract

Recent studies have shown that tumors of relapsed acute myeloid leukemia (AML) present additional genetic mutations compared to the primary tumors. The base excision repair (BER) pathway corrects oxidatively damaged mutagenic bases and plays an important role in maintaining genetic stability. The purpose of the present study was to investigate the relationship between BER functional polymorphisms and AML relapse. We focused on five major polymorphisms: OGG1 S326C, MUTYH Q324H, APE1 D148E, XRCC1 R194W, and XRCC1 R399Q. Ninety-four adults with AML who achieved first complete remission were recruited. Genotyping was performed with the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The OGG1 S326C CC genotype (associated with lower OGG1 activity) was observed more frequently in patients with AML relapse [28.9 vs. 8.9%, odds ratio (OR) = 4.10, 95% confidence interval (CI) = 1.35–12.70, P = 0.01]. Patients with the CC genotype exhibited shorter relapse-free survival (RFS). Moreover, the TCGA database suggested that low OGG1 expression in AML cells is associated with a higher frequency of mutations. The present findings suggest that the OGG1 S326C polymorphism increased the probability of AML relapse and may be useful as a prognostic factor for AML relapse risk.

Keywords

Acute myeloid leukemia Polymorphisms OGG1 DNA damage Base excision repair 

Notes

Acknowledgements

We are grateful to the experimental contribution of Atsushi Iwasaki and Yasuhiro Nitta.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Parkin B, Ouillette P, Li Y, Keller J, Lam C, Roulston D, et al. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood. 2013;121:369–77.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hiraoka W, Vazquez N, Nieves-Neira W, Chanock SJ, Pommier Y. Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest. 1998;102:1961–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tada-Oikawa S, Oikawa S, Kawanishi M, Yamada M, Kawanishi S. Generation of hydrogen peroxide precedes loss of mitochondrial membrane potential during DNA alkylation-induced apoptosis. FEBS Lett. 2009;442:65–9.CrossRefGoogle Scholar
  5. 5.
    Varbiro G, Veres B, Gallyas F Jr, Sumegi B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med. 2001;31:548–58.CrossRefPubMedGoogle Scholar
  6. 6.
    Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005;76:1439–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M. I et al. 8-Oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014;4:4689.  https://doi.org/10.1038/srep04689.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci. 2009;66:981–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Simonelli V, Mazzei F, D’Errico M, Dogliotti E. Gene susceptibility to oxidative damage: from single nucleotide polymorphisms to function. Mutat Res. 2012;731:1–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamane A, Kohno T, Ito K, Sunaga N, Aoki K, Yoshimura K, Murakami H, et al. Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydroxyguanine in human cell in vivo. Carcinogenesis. 2004;25:1689–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuriyama K, Tomonaga M, Kobayashi T, Nishikawa K, Ohshima T, Furusawa S, et al. Trial to extract prognostic factors prior to the start of induction chemotherapy for adult AML. In: Hiddemann W, Büchner T, Wörmann, editors. Acute leukemias VII: experimental approaches and novel therapies. New York: Springer; 1998. pp. 901–5.CrossRefGoogle Scholar
  12. 12.
    Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Brit J Haematol. 1999;107:69–79.CrossRefGoogle Scholar
  13. 13.
    Miyawaki S. JSH guideline for tumors of hematopoietic and lymphoid tissues: leukemia 1. Acute myeloid leukemia (AML). Int J Hematol. 2017;106:310–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Yamane A, Shinmura K, Sunaga N, Saitoh T, Yamaguchi S, Shinmura Y, et al. Suppressive activities of OGG1 and MYH proteins against G:C to T:A mutations caused by 8-hydroxyguanine but not by benzo[a]pyrene diol epoxide in human cells in vivo. Carcinogenesis. 2003;24:1031–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Bravard A, Vacher M, Moritz E, Vaslin L, Hall J, Epe B, et al. Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res. 2009;69:3642–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 2003;112:1751–61.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liddiard K, Hills R, Burnett AK, Darley RL, Tonks A. OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene. 2010;29:2005–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Preston TJ, Henderson JT, McCallum GP, Wells PG. Base excision repair of reactive oxygen species–initiated 7,8-dihydro-8-oxo-2′-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs. Mol Cancer Ther. 2009;8:2015–26.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bacsi A, Chodaczek G, Hazra TK, Konkel D, Boldogh I. Increased ROS generation in subsets of OGG1 knockout fibroblast cells. Mech Ageing Dev. 2007;128:637–49.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Wakita S, Yamaguchi H, Miyake K, Mitamura Y, Kosaka F, Dan K, et al. Importance of c-kit mutation detection method sensitivity in prognostic analyses of t(8;21)(q22;q22) acute myeloid leukemia. Leukemia. 2011;25:1423–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim EJ, Jeong P, Quan C, Kim J, Bae SC, Yoon SJ, et al. Genotypes of TNF-α, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Adult Urol. 2005;65:70–5.CrossRefGoogle Scholar
  23. 23.
    Kim EJ, Yan C, Ha YS, Jeong P, Yi Kim I, Moon SK, et al. Analysis of hOGG1 genotype as a prognostic marker for muscle invasive bladder cancer: a novel approach using peptide nucleic acid-mediated, real-time PCR clamping. Urol Oncol. 2012;30:673–9.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  • Nanami Gotoh
    • 1
  • Takayuki Saitoh
    • 1
  • Noriyuki Takahashi
    • 1
  • Tetsuhiro Kasamatsu
    • 1
  • Yusuke Minato
    • 2
  • Alkebsi Lobna
    • 1
  • Tsukasa Oda
    • 3
  • Takumi Hoshino
    • 4
  • Toru Sakura
    • 4
  • Hiroaki Shimizu
    • 5
  • Makiko Takizawa
    • 6
  • Hiroshi Handa
    • 6
  • Akihiko Yokohama
    • 7
  • Norifumi Tsukamoto
    • 5
  • Hirokazu Murakami
    • 1
  1. 1.Graduate School of Health SciencesGunma UniversityMaebashiJapan
  2. 2.Department of Virology and Preventive MedicineGunma University Graduate School of MedicineGunmaJapan
  3. 3.Laboratory of Molecular Genetics, Institute for Molecular and Cellular RegulationGunma UniversityGunmaJapan
  4. 4.Leukemia Research CenterSaiseikai Maebashi HospitalGunmaJapan
  5. 5.Oncology CenterGunma University HospitalGunmaJapan
  6. 6.Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
  7. 7.Division of Blood Transfusion ServiceGunma University HospitalGunmaJapan

Personalised recommendations