Advertisement

Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis

  • Luan Cao-Sy
  • Naoshi Obara
  • Tatsuhiro Sakamoto
  • Takayasu Kato
  • Keiichiro Hattori
  • Shingo Sakashita
  • Yasuhito Nannya
  • Seishi Ogawa
  • Hironori Harada
  • Mamiko Sakata-Yanagimoto
  • Hidekazu Nishikii
  • Shigeru ChibaEmail author
Original Article
  • 39 Downloads

Abstract

Nestin-expressing stromal cells (NESCs) and Schwann cells in the bone marrow (BM) play crucial roles as a niche for normal hematopoietic stem cells in mice. It has been reported that both types of cells are decreased in myeloproliferative neoplasms in patients and also in a mouse model, whereas an increase in NESCs was reported in acute myeloid leukemia. It is thus of interest whether and how these BM stromal cells are structured in myelodysplastic syndromes (MDS). Here, we focused on NESCs and glial fibrillary acidic protein (GFAP)-expressing cells in the BM of MDS patients. We found a marked increase of NESCs in MDS with fibrosis (MDS-F) at a high frequency (9/19; 47.4%), but not in MDS without fibrosis (0/26; 0%). Intriguingly, in eight of the nine (88.9%) MDS-F cases with elevated NESCs, a majority of NESCs also expressed GFAP, with an additional increase in GFAP single-positive cells. Furthermore, in seven of them, we found a prominent structure characterized by neurofilament heavy chain staining surrounded by NESCs with GFAP expression. This structure may represent peripheral nerve axons surrounded by Schwann cells, and could be relevant to the pathophysiology of MDS-F.

Keywords

Nestin-expressing stromal cells Schwann cells Myelodysplastic syndromes Fibrosis Human bone marrow 

Notes

Acknowledgements

We thank Dr. Tran B. Nguyen and Dr. Xinh Thi Phan for their excellent discussion. We also thank Dr. Bryan J. Mathis and Ms. F. Miyamasu, Medical English Communications Center, University of Tsukuba, for their editorial assistance. We thank Prof. Masayuki Masu, Department of Molecular Neurobiology, University of Tsukuba, for providing anti-Tuj1 antibody. This work was supported by Grants-in-Aid for Scientific Research (Kakenhi Nos. 15K15359 (S.C.) and 17K09898 (N.O)) from the Ministry of Education, Culture, Sports, and Science of Japan; the Project for Cancer Research and Therapeutic Evolution (P-CREATE) from the Japan Agency for Medical Research and Development (AMED) (S.C.); and Gilead Sciences International Research Scholars Program in Hematology/Oncology (H.N).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Patients’ samples are used in this work. All the patients provided written informed consent before inclusion in the study, and the study protocol was approved by the ethics committee of the University of Tsukuba Hospital, which adheres to the guidelines of the Declaration of Helsinki.

Supplementary material

12185_2018_2576_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2610 KB)

References

  1. 1.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.CrossRefGoogle Scholar
  2. 2.
    Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95.CrossRefGoogle Scholar
  3. 3.
    McKay R. Stem cells in the central nervous system. Science. 1997;276:66–71.CrossRefGoogle Scholar
  4. 4.
    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502:637–43.CrossRefGoogle Scholar
  5. 5.
    Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.CrossRefGoogle Scholar
  6. 6.
    Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem cell. 2014;15:365–75.CrossRefGoogle Scholar
  7. 7.
    Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512:78–81.CrossRefGoogle Scholar
  8. 8.
    Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7:118–29.CrossRefGoogle Scholar
  9. 9.
    Ogawa S. Splicing factor mutations in myelodysplasia. Int J Hematol. 2012;96:438–42.CrossRefGoogle Scholar
  10. 10.
    Cazzola M, Malcovati L. Myelodysplastic syndromes–coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.CrossRefGoogle Scholar
  11. 11.
    Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Br J Med Biol Res. 2015;48:207–13.CrossRefGoogle Scholar
  12. 12.
    Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Invest. 2014;94:1212–23.CrossRefGoogle Scholar
  13. 13.
    Balderman SR, Li AJ, Hoffman CM, Frisch BJ, Goodman AN, LaMere MW, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 2016;127:616–25.CrossRefGoogle Scholar
  14. 14.
    Flores-Figueroa E, Varma S, Montgomery K, Greenberg PL, Gratzinger D. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest. 2012;92:1330–41.CrossRefGoogle Scholar
  15. 15.
    Buesche G, Teoman H, Wilczak W, Ganser A, Hecker H, Wilkens L, et al. Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia. 2008;22:313–22.CrossRefGoogle Scholar
  16. 16.
    Fu B, Ok CY, Goswami M, Xei W, Jaso JM, Muzzafar T, et al. The clinical importance of moderate/severe bone marrow fibrosis in patients with therapy-related myelodysplastic syndromes. Ann Hematol. 2013;92:1335–43.CrossRefGoogle Scholar
  17. 17.
    Marisavljevic D, Rolovic Z, Cemerikic V, Boskovic D, Colovic M. Myelofibrosis in primary myelodysplastic syndromes: clinical and biological significance. Med Oncol. 2004;21:325–31.CrossRefGoogle Scholar
  18. 18.
    Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27:754–62.CrossRefGoogle Scholar
  19. 19.
    Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.Google Scholar
  20. 20.
    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefGoogle Scholar
  21. 21.
    Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.CrossRefGoogle Scholar
  22. 22.
    Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Rep. 2017;8:1714–26.CrossRefGoogle Scholar
  23. 23.
    Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.CrossRefGoogle Scholar
  24. 24.
    Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.CrossRefGoogle Scholar
  25. 25.
    Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.CrossRefGoogle Scholar
  26. 26.
    Schemenau J, Baldus S, Anlauf M, Reinecke P, Braunstein S, Blum S, et al. Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes. Eur J Haematol. 2015;95:181–9.CrossRefGoogle Scholar
  27. 27.
    Ramos F, Robledo C, Izquierdo-Garcia FM, Suarez-Vilela D, Benito R, Fuertes M, et al. Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis. Oncotarget. 2016;7:30492–503.CrossRefGoogle Scholar
  28. 28.
    Gu H, Wang S, Messam CA, Yao Z. Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res. 2002;943:174–80.CrossRefGoogle Scholar
  29. 29.
    Minovi A, Witt M, Prescher A, Gudziol V, Dazert S, Hatt H, et al. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium. Histol Histopathol. 2010;25:177–87.Google Scholar
  30. 30.
    Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, et al. Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res. 2007;67:501–10.CrossRefGoogle Scholar
  31. 31.
    Perry J, Ho M, Viero S, Zheng K, Jacobs R, Thorner PS. The intermediate filament nestin is highly expressed in normal human podocytes and podocytes in glomerular disease. Pediatr Dev Pathol. 2007;10:369–82.CrossRefGoogle Scholar
  32. 32.
    Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010;58:721–30.CrossRefGoogle Scholar
  33. 33.
    Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28:2162–71.CrossRefGoogle Scholar
  34. 34.
    Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, et al. Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510–22.CrossRefGoogle Scholar
  35. 35.
    Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol. 2001;60:588–97.CrossRefGoogle Scholar
  36. 36.
    Calderone A. The biological role of Nestin((+))-cells in physiological and pathological cardiovascular remodeling. Front Cell Dev Biol. 2018;6:15.CrossRefGoogle Scholar
  37. 37.
    Beguin PC, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813–20.CrossRefGoogle Scholar
  38. 38.
    Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, et al. Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One. 2017;12:e0176147.CrossRefGoogle Scholar
  39. 39.
    Dong Z, Sinanan A, Parkinson D, Parmantier E, Mirsky R, Jessen KR. Schwann cell development in embryonic mouse nerves. J Neurosci Res. 1999;56:334–48.CrossRefGoogle Scholar
  40. 40.
    Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife. 2014;3:e03696.CrossRefGoogle Scholar
  41. 41.
    Dybedal I, Guan F, Borge OJ, Veiby OP, Ramsfjell V, Nagata S, et al. Transforming growth factor-beta1 abrogates Fas-induced growth suppression and apoptosis of murine bone marrow progenitor cells. Blood. 1997;90:3395–403.Google Scholar
  42. 42.
    Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, et al. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci. 2000;113:383–90.Google Scholar
  43. 43.
    Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-beta signaling in fibrosis. Growth Factors. 2011;29:196–202.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Hematology 2019

Authors and Affiliations

  • Luan Cao-Sy
    • 1
    • 5
  • Naoshi Obara
    • 2
  • Tatsuhiro Sakamoto
    • 4
  • Takayasu Kato
    • 1
    • 2
  • Keiichiro Hattori
    • 1
    • 2
  • Shingo Sakashita
    • 3
  • Yasuhito Nannya
    • 6
  • Seishi Ogawa
    • 6
  • Hironori Harada
    • 8
  • Mamiko Sakata-Yanagimoto
    • 2
  • Hidekazu Nishikii
    • 2
  • Shigeru Chiba
    • 1
    • 2
    • 7
    Email author return OK on get
  1. 1.Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Department of Hematology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  3. 3.Department of Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  4. 4.Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
  5. 5.Department of Molecular CytogeneticsBlood Transfusion Hematology HospitalHo Chi Minh CityVietnam
  6. 6.Department of Pathology and Tumor Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
  7. 7.TARA CenterUniversity of TsukubaTsukubaJapan
  8. 8.Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesHachiojiJapan

Personalised recommendations