Advertisement

International Journal of Hematology

, Volume 108, Issue 2, pp 208–212 | Cite as

Rearrangement of VPS13B, a causative gene of Cohen syndrome, in a case of RUNX1RUNX1T1 leukemia with t(8;12;21)

  • Akihiro Abe
  • Yukiya Yamamoto
  • Akira Katsumi
  • Akinao Okamoto
  • Masutaka Tokuda
  • Yoko Inaguma
  • Kiyoko Yamamoto
  • Masamitsu Yanada
  • Tadaharu Kanie
  • Akihiro Tomita
  • Yoshiki Akatsuka
  • Masataka Okamoto
  • Toshiki Kameyama
  • Akila Mayeda
  • Nobuhiko Emi
Case Report
  • 182 Downloads

Abstract

Variant chromosomal translocations associated with t(8;21) are observed in 3–4% of acute myeloid leukemia (AML) cases with a RUNX1RUNX1T1 fusion gene. However, the molecular events that occur in variants of t(8;21) are not well characterized. In the present study, we report genetic features of a variant three-way translocation of t(8;12;21)(q22;p11;q22) in a patient with AML. In this patient, leukemia cells lacked azurophilic granules, which does not correspond with the classic features of t(8;21). RNA-seq analysis revealed that TM7SF3 at 12p11 was fused to VPS13B at 8q22 and VPS13B to RUNX1, in addition to RUNX1RUNX1T1. VPS13B was located near RUNX1T1 and both were localized at the same chromosomal bands. The reading frames of TM7SF3 and VPS13B did not match to those of VPS13B and RUNX1, respectively. Disruption of VPS13B causes Cohen syndrome, which presents intermittent neutropenia with a left-shifted granulopoiesis in the bone marrow. Disruption of VPS13B may thus cause the unusual features of RUNX1RUNX1T1 leukemia. Our case indicates that rearrangement of VPS13B may be additional genetic events in variant t(8;21).

Keywords

AML RUNX1–RUNX1T1 VPS13B TM7SF3 3-Way translocation 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 16K09860 to AA, a Grant-in-Aid from Fujita Health University to NE and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We sincerely thank Sachiko Iba for valuable laboratory assistance. We greatly appreciate Dr. Yuya Ouchi, Dr. Hidehito Inagaki, and Dr Hiroki Kurahashi (Genome and Transcriptome Analysis Center, FHU) for technical assistance of next-generation sequencing.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12185_2017_2387_MOESM1_ESM.pdf (145 kb)
Supplementary material 1 (PDF 145 kb)

References

  1. 1.
    de Cytogenetique Hematologique GF. Acute myelogenous leukemia with an 8;21 translocation. A report on 148 cases from the Groupe Francais de Cytogenetique Hematologique. Cancer Genet Cytogenet. 1990;44:169–79.CrossRefGoogle Scholar
  2. 2.
    Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116:354–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.PubMedGoogle Scholar
  4. 4.
    Trujillo JM, Cork A, Ahearn MJ, Youness EL, McCredie KB. Hematologic and cytologic characterization of 8/21 translocation acute granulocytic leukemia. Blood. 1979;53:695–706.PubMedGoogle Scholar
  5. 5.
    Huang L, Abruzzo LV, Valbuena JR, Medeiros LJ, Lin P. Acute myeloid leukemia associated with variant t(8;21) detected by conventional cytogenetic and molecular studies: a report of four cases and review of the literature. Am J Clin Pathol. 2006;125:267–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458:97–101.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weinberg OK, Seetharam M, Ren L, Seo K, Ma L, Merker JD, et al. Clinical characterization of acute myeloid leukemia with myelodysplasia-related changes as defined by the 2008 WHO classification system. Blood. 2009;113:1906–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Miyawaki S. JSH guideline for tumors of hematopoietic and lymphoid tissues: leukemia 1. Acute myeloid leukemia (AML). Int J Hematol. 2017;106:310–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12:R72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol. 2011;7:e1001138.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kozu T, Miyoshi H, Shimizu K, Maseki N, Kaneko Y, Asou H, et al. Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood. 1993;82:1270–6.PubMedGoogle Scholar
  12. 12.
    Mitelman F, Johansson B, Mertens F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman. Accessed 16 June 2017.
  13. 13.
    Rege K, Swansbury GJ, Atra AA, Horton C, Min T, Dainton MG, et al. Disease features in acute myeloid leukemia with t(8;21)(q22;q22). Influence of age, secondary karyotype abnormalities, CD19 status, and extramedullary leukemia on survival. Leuk Lymphoma. 2000;40:67–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Isaac R, Goldstein I, Furth N, Zilber N, Streim S, Boura-Halfon S, et al. TM7SF3, a novel p53-regulated homeostatic factor, attenuates cellular stress and the subsequent induction of the unfolded protein response. Cell Death Differ. 2017;24:132–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Balikova I, Lehesjoki AE, de Ravel TJ, Thienpont B, Chandler KE, Clayton-Smith J, et al. Deletions in the VPS13B (COH1) gene as a cause of Cohen syndrome. Hum Mutat. 2009;30:E845–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Kivitie-Kallio S, Rajantie J, Juvonen E, Norio R. Granulocytopenia in Cohen syndrome. Br J Haematol. 1997;98:308–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Seifert W, Holder-Espinasse M, Spranger S, Hoeltzenbein M, Rossier E, Dollfus H, et al. Mutational spectrum of COH1 and clinical heterogeneity in Cohen syndrome. J Med Genet. 2006;43:e22.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gueneau L, Duplomb L, Sarda P, Hamel C, Aral B, Chehadeh SE, et al. Congenital neutropenia with retinopathy, a new phenotype without intellectual deficiency or obesity secondary to VPS13B mutations. Am J Med Genet A. 2014;164A:522–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Marcucci G, Mrozek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23:5705–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Peniket A, Wainscoat J, Side L, Daly S, Kusec R, Buck G, et al. Del (9q) AML: clinical and cytological characteristics and prognostic implications. Br J Haematol. 2005;129:210–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Schoch C, Haase D, Haferlach T, Gudat H, Buchner T, Freund M, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia. 1996;10:1288–95.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Akihiro Abe
    • 1
  • Yukiya Yamamoto
    • 1
  • Akira Katsumi
    • 2
  • Akinao Okamoto
    • 1
  • Masutaka Tokuda
    • 1
  • Yoko Inaguma
    • 1
  • Kiyoko Yamamoto
    • 1
  • Masamitsu Yanada
    • 1
  • Tadaharu Kanie
    • 1
  • Akihiro Tomita
    • 1
  • Yoshiki Akatsuka
    • 1
  • Masataka Okamoto
    • 1
  • Toshiki Kameyama
    • 3
  • Akila Mayeda
    • 3
  • Nobuhiko Emi
    • 1
  1. 1.Department of HematologyFujita Health UniversityToyoakeJapan
  2. 2.National Center for Geriatrics and GerontologyObuJapan
  3. 3.Division of Gene Expression Mechanism, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan

Personalised recommendations