Advertisement

Kathetergestützte Aortenklappenimplantation (TAVI)

  • M. Weber
  • N. WernerEmail author
CME
  • 125 Downloads

Zusammenfassung

Heutzutage stellt der kathetergestützte Aortenklappenersatz (TAVI) ein Standardverfahren zur Therapie der symptomatischen, hochgradigen Aortenklappenstenose dar. Während TAVI zunächst nur bei Hochrisikopatienten ohne operativen Therapieansatz eingesetzt wurde, zeigen aktuelle Studien bei Patienten mit mittlerem operativem Risiko vergleichbare Überlebensraten nach TAVI und operativem Aortenklappenersatz. Beide Therapieansätze unterscheiden sich jedoch bezüglich der Art und Häufigkeit von Komplikationen. In diesem Übersichtsbeitrag fassen die Autoren die aktuellsten randomisierten Studien zusammen, die TAVI mit dem operativen Aortenklappenersatz vergleichen, und geben einen Überblick über zukünftige Entwicklungen.

Schlüsselwörter

Aortenklappenstenose Chirurgischer Aortenklappenersatz Multimorbidität Herzteam Dyspnoe 

Transcatheter aortic valve implantation (TAVI)

Abstract

Transcatheter aortic valve implantation (TAVI) has evolved into a standard procedure for treatment of patients with severe, symptomatic aortic valve stenosis. At the beginning of the TAVI era its use was limited to inoperable high-risk patients; however, recent studies demonstrated that TAVI was not inferior to standard surgical aortic valve replacement (SAVR) for intermediate-risk patients with respect to survival rates; however, the types and rates of complications differ between the two procedures. In this review article the authors summarize the latest randomized study results comparing TAVI with SAVR and provide an overview of future developments.

Keywords

Aortic valve stenosis Surgical aortic valve replacement Multimorbidity Heart team Dyspnea 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Weber gibt an, dass kein Interessenkonflikt besteht. N. Werner erhielt Forschungsunterstützung sowie Vortragshonorare von Medtronic, Edwards Lifesciences, Abbott und Boston-Scientific.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Otto CM, Lind BK, Kitzman DW et al (1999) Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 341:142–147CrossRefGoogle Scholar
  2. 2.
    Soler-Soler J, Galve E (2000) Worldwide perspective of valve disease. Heart 83:721–725CrossRefGoogle Scholar
  3. 3.
    Iung B, Baron G, Butchart EG et al (2003) A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 24:1231–1243CrossRefGoogle Scholar
  4. 4.
    Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791CrossRefGoogle Scholar
  5. 5.
    Baumgartner HC, Hung JC-C, Bermejo J et al (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 18:254–275CrossRefGoogle Scholar
  6. 6.
    Lababidi Z (1983) Aortic balloon valvuloplasty. Am Heart J 106:751–752CrossRefGoogle Scholar
  7. 7.
    Cribier A, Eltchaninoff H, Bash A et al (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008CrossRefGoogle Scholar
  8. 8.
    Reinohl J, Kaier K, Reinecke H et al (2015) Effect of availability of transcatheter aortic-valve replacement on clinical practice. N Engl J Med 373:2438–2447CrossRefGoogle Scholar
  9. 9.
    Rodes-Cabau J, Webb JG, Cheung A et al (2010) Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J Am Coll Cardiol 55:1080–1090CrossRefGoogle Scholar
  10. 10.
    Tamburino C, Capodanno D, Ramondo A et al (2011) Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation 123:299–308CrossRefGoogle Scholar
  11. 11.
    Thomas M, Schymik G, Walther T et al (2010) Thirty-day results of the SAPIEN aortic Bioprosthesis European Outcome (SOURCE) Registry: a European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve. Circulation 122:62–69CrossRefGoogle Scholar
  12. 12.
    Piazza N, Grube E, Gerckens U et al (2008) Procedural and 30-day outcomes following transcatheter aortic valve implantation using the third generation (18 Fr) corevalve revalving system: results from the multicentre, expanded evaluation registry 1‑year following CE mark approval. EuroIntervention 4:242–249CrossRefGoogle Scholar
  13. 13.
    Leon MB, Smith CR, Mack M et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363:1597–1607CrossRefGoogle Scholar
  14. 14.
    Smith CR, Leon MB, Mack MJ et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198CrossRefGoogle Scholar
  15. 15.
    Reardon MJ, Van Mieghem NM, Popma JJ et al (2017) Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med 376:1321–1331CrossRefGoogle Scholar
  16. 16.
    Leon MB, Smith CR, Mack MJ et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374:1609–1620CrossRefGoogle Scholar
  17. 17.
    Kodali SK, Williams MR, Smith CR et al (2012) Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366:1686–1695CrossRefGoogle Scholar
  18. 18.
    Kapadia SR, Leon MB, Makkar RR et al (2015) 5‑year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385:2485–2491CrossRefGoogle Scholar
  19. 19.
    Mack MJ, Leon MB, Smith CR et al (2015) 5‑year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385:2477–2484CrossRefGoogle Scholar
  20. 20.
    Grube E, Laborde JC, Gerckens U et al (2006) Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation 114:1616–1624CrossRefGoogle Scholar
  21. 21.
    Adams DH, Popma JJ, Reardon MJ et al (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 370:1790–1798CrossRefGoogle Scholar
  22. 22.
    Reardon MJ, Adams DH, Kleiman NS et al (2015) 2‑year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. J Am Coll Cardiol 66:113–121CrossRefGoogle Scholar
  23. 23.
    Thourani VH, Kodali S, Makkar RR et al (2016) Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet 387:2218–2225CrossRefGoogle Scholar
  24. 24.
    Thyregod HG, Steinbruchel DA, Ihlemann N et al (2015) Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1‑year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol 65:2184–2194CrossRefGoogle Scholar
  25. 25.
    Sondergaard L, Steinbruchel DA, Ihlemann N et al (2016) Two-year outcomes in patients with severe aortic valve stenosis randomized to transcatheter versus surgical aortic valve replacement: the all-comers nordic aortic valve intervention randomized clinical trial. Circ Cardiovasc Interv.  https://doi.org/10.1161/circinterventions.115.003665 CrossRefPubMedGoogle Scholar
  26. 26.
    Bosmans J, Bleiziffer S, Gerckens U et al (2015) The incidence and predictors of early- and mid-term clinically relevant neurological events after transcatheter aortic valve replacement in real-world patients. J Am Coll Cardiol 66:209–217CrossRefGoogle Scholar
  27. 27.
    Hamm CW, Arsalan M, Mack MJ (2016) The future of transcatheter aortic valve implantation. Eur Heart J 37:803–810CrossRefGoogle Scholar
  28. 28.
    Gaede L, Blumenstein J, Liebetrau C et al (2018) Outcome after transvascular transcatheter aortic valve implantation in 2016. Eur Heart J 39:667–675CrossRefGoogle Scholar
  29. 29.
    Kapadia SR, Kodali S, Makkar R et al (2017) Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol 69:367–377CrossRefGoogle Scholar
  30. 30.
    Haussig S, Mangner N, Dwyer MG et al (2016) Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: the CLEAN-TAVI randomized clinical trial. JAMA 316:592–601CrossRefGoogle Scholar
  31. 31.
    Van Mieghem NM, Van Gils L, Ahmad H et al (2016) Filter-based cerebral embolic protection with transcatheter aortic valve implantation: the randomised MISTRAL-C trial. EuroIntervention 12:499–507CrossRefGoogle Scholar
  32. 32.
    Lansky AJ, Schofer J, Tchetche D et al (2015) A prospective randomized evaluation of the TriGuard HDH embolic DEFLECTion device during transcatheter aortic valve implantation: results from the DEFLECT III trial. Eur Heart J 36:2070–2078CrossRefGoogle Scholar
  33. 33.
    Seeger J, Gonska B, Otto M et al (2017) Cerebral embolic protection during transcatheter aortic valve replacement significantly reduces death and stroke compared with unprotected procedures. JACC Cardiovasc Interv 10:2297–2303CrossRefGoogle Scholar
  34. 34.
    Abdul-Jawad Altisent O, Durand E, Munoz-Garcia AJ et al (2016) Warfarin and antiplatelet therapy versus warfarin alone for treating patients with atrial fibrillation undergoing transcatheter aortic valve replacement. JACC Cardiovasc Interv 9:1706–1717CrossRefGoogle Scholar
  35. 35.
    Sondergaard L, Sawaya FJ (2017) Antithrombotic management after transcatheter aortic valve replacement: more questions than answers. JACC Cardiovasc Interv 10:75–78CrossRefGoogle Scholar
  36. 36.
    Nazif TM, Dizon JM, Hahn RT et al (2015) Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC Cardiovasc Interv 8:60–69CrossRefGoogle Scholar
  37. 37.
    Urena M, Mok M, Serra V et al (2012) Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J Am Coll Cardiol 60:1743–1752CrossRefGoogle Scholar
  38. 38.
    Urena M, Hayek S, Cheema AN et al (2015) Arrhythmia burden in elderly patients with severe aortic stenosis as determined by continuous electrocardiographic recording: toward a better understanding of arrhythmic events after transcatheter aortic valve replacement. Circulation 131:469–477CrossRefGoogle Scholar
  39. 39.
    Weber M, Bruggemann E, Schueler R et al (2015) Impact of left ventricular conduction defect with or without need for permanent right ventricular pacing on functional and clinical recovery after TAVR. Clin Res Cardiol 104:964–974CrossRefGoogle Scholar
  40. 40.
    Sondergaard L, De Backer O, Kofoed KF et al (2017) Natural history of subclinical leaflet thrombosis affecting motion in bioprosthetic aortic valves. Eur Heart J 38:2201–2207CrossRefGoogle Scholar
  41. 41.
    Makkar RR, Fontana G, Jilaihawi H et al (2015) Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med 373:2015–2024CrossRefGoogle Scholar
  42. 42.
    Pasic M, Unbehaun A, Buz S et al (2015) Annular rupture during transcatheter aortic valve replacement: classification, pathophysiology, diagnostics, treatment approaches, and prevention. JACC Cardiovasc Interv 8:1–9CrossRefGoogle Scholar
  43. 43.
    Ribeiro HB, Webb JG, Makkar RR et al (2013) Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol 62:1552–1562CrossRefGoogle Scholar
  44. 44.
    Roy DA, Schaefer U, Guetta V et al (2013) Transcatheter aortic valve implantation for pure severe native aortic valve regurgitation. J Am Coll Cardiol 61:1577–1584CrossRefGoogle Scholar
  45. 45.
    Wendt D, Kahlert P, Pasa S et al (2014) Transapical transcatheter aortic valve for severe aortic regurgitation: expanding the limits. JACC Cardiovasc Interv 7:1159–1167CrossRefGoogle Scholar
  46. 46.
    Azadani AN, Tseng EE (2011) Transcatheter heart valves for failing bioprostheses: state-of-the-art review of valve-in-valve implantation. Circ Cardiovasc Interv 4:621–628CrossRefGoogle Scholar
  47. 47.
    Dvir D, Webb J, Brecker S et al (2012) Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation 126:2335–2344CrossRefGoogle Scholar
  48. 48.
    Tarantini G, Purita PAM, D’Onofrio A et al (2017) Long-term outcomes and prosthesis performance after transcatheter aortic valve replacement: results of self-expandable and balloon-expandable transcatheter heart valves. Ann Cardiothorac Surg 6:473–483CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Kardiologie - Herz- und Kreislaufforschung e.V. Published by Springer Medizin Verlag GmbH, ein Teil von Springer Nature - all rights reserved 2019

Authors and Affiliations

  1. 1.Medizinische Klinik und Poliklinik IIUniversitätsklinikum BonnBonnDeutschland

Personalised recommendations