The Pivot Shift: Current Experimental Methodology and Clinical Utility for Anterior Cruciate Ligament Rupture and Associated Injury

  • Nicholas J. Vaudreuil
  • Benjamin B. Rothrauff
  • Darren de SA
  • Volker MusahlEmail author
Outcomes Research in Orthopedics (O Ayeni, section editor)
Part of the following topical collections:
  1. Topical Collection on Outcomes Research in Orthopedics


Purpose of Review

The purpose of this manuscript is to (1) examine the history, techniques, and methodology behind quantitative pivot shift investigations to date and (2) review the current status of pivot shift research for its clinical utility for management of anterior cruciate ligament (ACL) rupture with associated injuries including the anterolateral complex (ALC).

Recent Findings

The pivot shift is a useful physical exam maneuver for diagnosis of rotatory instability related to ACL tear. Recent evidence suggests that the pivot shift is multifactorial and can be seen in the presence of ACL tear with concomitant injury to secondary stabilizers or with predisposing anatomical factors.


The presence of a pivot shift post-operatively is associated with poorer outcomes after ACL reconstruction. Recent clinical and biomechanical investigations can help guide clinicians in utilizing pivot shift in diagnosis and surgical planning. Further research is needed to clarify optimal management of ALC in addition to ACL injury.


Pivot shift Anterior cruciate ligament tear Anterior cruciate ligament reconstruction Rotatory knee laxity Anterolateral complex Physical exam 


Compliance with Ethical Standards

Conflict of Interest

Nicholas J. Vaudreuil, Benjamin B. Rothrauff, and Darren de Sa declare no conflict of interest.

Volker Musahl has done consulting work for Smith & Nephew.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Markatos K, Kaseta MK, Lallos SN, Korres DS, Efstathopoulos N. The anatomy of the ACL and its importance in ACL reconstruction. Eur J Orthop Surg Traumatol. 2013;23(7):747–52.CrossRefGoogle Scholar
  2. 2.
    Colvin AC, Shen W, Musahl V, Fu FH. Avoiding pitfalls in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):956–63.CrossRefGoogle Scholar
  3. 3.
    Lane CG, Warren R, Pearle AD. The pivot shift. J Am Acad Orthop Surg. 2008;16(12):679–88.CrossRefGoogle Scholar
  4. 4.
    Torg JS, Conrad W, Kalen V. Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med. 1976;4(2):84–93.CrossRefGoogle Scholar
  5. 5.
    Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther. 2006;36(5):267–88.CrossRefGoogle Scholar
  6. 6.
    Woo SL, Kanamori A, Zeminski J, et al. The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am. 2002;84-A(6):907–14.CrossRefGoogle Scholar
  7. 7.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SLY. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2002;30(5):660–6.CrossRefGoogle Scholar
  8. 8.
    Woo SL, Wu C, Dede O, Vercillo F, Noorani S. Biomechanics and anterior cruciate ligament reconstruction. J Orthop Surg Res. 2006;1:2.CrossRefGoogle Scholar
  9. 9.
    Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med. 1990;18(4):354–8.CrossRefGoogle Scholar
  10. 10.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(3):629–34.CrossRefGoogle Scholar
  11. 11.
    Jonsson H, Riklund-Ahlstrom K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand. 2004;75(5):594–9.CrossRefGoogle Scholar
  12. 12.
    Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980;147:45–50.Google Scholar
  13. 13.
    Sundemo D, Alentorn-Geli E, Hoshino Y, Musahl V, Karlsson J, Samuelsson K. Objective measures on knee instability: dynamic tests: a review of devices for assessment of dynamic knee laxity through utilization of the pivot shift test. Curr Rev Musculoskelet Med. 2016;9(2):148–59.CrossRefGoogle Scholar
  14. 14.
    Matsumoto H. Mechanism of the pivot shift. J Bone Joint Surg Br. 1990;72(5):816–21.CrossRefGoogle Scholar
  15. 15.
    Arilla FV, Rahnemai-Azar AA, Yacuzzi C, Guenther D, Engel BS, Fu FH, et al. Correlation between a 2D simple image analysis method and 3D bony motion during the pivot shift test. Knee. 2016;23(6):1059–63.CrossRefGoogle Scholar
  16. 16.
    Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, et al. Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):732–6.CrossRefGoogle Scholar
  17. 17.
    Hefti F, Muller W, Jakob RP, Staubli HU. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc. 1993;1(3–4):226–34.CrossRefGoogle Scholar
  18. 18.
    Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, et al. The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):724–31.CrossRefGoogle Scholar
  19. 19.
    Noyes FR, Grood ES, Cummings JF, Wroble RR. An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med. 1991;19(2):148–55.CrossRefGoogle Scholar
  20. 20.
    Arilla FV, Yeung M, Bell K, Rahnemai-Azar AA, Rothrauff BB, Fu FH, et al. Experimental execution of the simulated pivot-shift test: a systematic review of techniques. Arthroscopy. 2015;31(12):2445–54 e2.CrossRefGoogle Scholar
  21. 21.
    Kopf S, Musahl V, Perka C, Kauert R, Hoburg A, Becker R. The influence of applied internal and external rotation on the pivot shift phenomenon. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1106–10.CrossRefGoogle Scholar
  22. 22.
    Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, et al. Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med. 2012;40(1):91–9.CrossRefGoogle Scholar
  23. 23.
    Patel NK, Murphy CI, Nagai K, et al. Passive teaching is not as effective as active teaching for learning the standard technique of pivot shift test. Journal of ISAKOS: Joint Disorders & Orthopaedic Sports Medicine 2018.Google Scholar
  24. 24.
    Hoshino Y, Araujo P, Ahlden M, et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):975–80.CrossRefGoogle Scholar
  25. 25.
    Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, et al. Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):692–7.CrossRefGoogle Scholar
  26. 26.
    Tanaka M, Vyas D, Moloney G, Bedi A, Pearle AD, Musahl V. What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc. 2012;20(4):737–42.CrossRefGoogle Scholar
  27. 27.
    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P. Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res. 2007;454:59–65.CrossRefGoogle Scholar
  28. 28.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD. In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):487–92.CrossRefGoogle Scholar
  29. 29.
    Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, et al. Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med. 2013;32(1):61–70.CrossRefGoogle Scholar
  30. 30.
    Musahl V, Griffith C, Irrgang JJ, Hoshino Y, Kuroda R, Lopomo N, et al. Validation of quantitative measures of rotatory knee laxity. Am J Sports Med. 2016;44(9):2393–8.CrossRefGoogle Scholar
  31. 31.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, et al. An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin. 2012;15(12):1323–8.CrossRefGoogle Scholar
  32. 32.
    Zlotnicki JP, Naendrup JH, Ferrer GA, Debski RE. Basic biomechanic principles of knee instability. Curr Rev Musculoskelet Med. 2016;9(2):114–22.CrossRefGoogle Scholar
  33. 33.
    Musahl V, Voos J, O’Loughlin PF, et al. Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1208–13.CrossRefGoogle Scholar
  34. 34.
    Kuroda R, Hoshino Y, Araki D, Nishizawa Y, Nagamune K, Matsumoto T, et al. Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):686–91.CrossRefGoogle Scholar
  35. 35.
    Matsushita T, Oka S, Nagamune K, et al. Differences in knee kinematics between awake and anesthetized patients during the Lachman and pivot-shift tests for anterior cruciate ligament deficiency. Orthop J Sports Med. 2013;1(1):2325967113487855.Google Scholar
  36. 36.
    Sakai H, Hiraoka H, Yashiki M. Gravity-assisted pivot-shift test can predict the function of the reconstructed anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):572–8.CrossRefGoogle Scholar
  37. 37.
    Sakai H, Yajima H, Kobayashi N, Kanda T, Hiraoka H, Tamai K, et al. Gravity-assisted pivot-shift test for anterior cruciate ligament injury: a new procedure to detect anterolateral rotatory instability of the knee joint. Knee Surg Sports Traumatol Arthrosc. 2006;14(1):2–6.CrossRefGoogle Scholar
  38. 38.
    Fetto JF, Marshall JL. Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am. 1979;61(5):710–4.CrossRefGoogle Scholar
  39. 39.
    Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL. The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1232–8.CrossRefGoogle Scholar
  40. 40.
    Musahl V, Burnham J, Lian J, et al. High-grade rotatory knee laxity may be predictable in ACL injuries. Knee Surg Sports Traumatol Arthrosc 2018.Google Scholar
  41. 41.
    Song GY, Zhang H, Wu G, Zhang J, Liu X, Xue Z, et al. Patients with high-grade pivot-shift phenomenon are associated with higher prevalence of anterolateral ligament injury after acute anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1111–6.CrossRefGoogle Scholar
  42. 42.
    Shaver JC, Johnson DL. Unlocking the ‘pivot shift’ in ACL surgery: medial meniscus evaluation and treatment. Orthopedics 2008;31(12).Google Scholar
  43. 43.
    Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, et al. The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med. 2016;44(12):3126–31.CrossRefGoogle Scholar
  44. 44.
    • Song GY, Zhang H, Wang QQ, et al. Risk factors associated with grade 3 pivot shift after acute anterior cruciate ligament injuries. Am J Sports Med. 2016;44(2):362–9 This is a useful article that discusses the pre-operative factors associated with a high-grade pivot shift. CrossRefGoogle Scholar
  45. 45.
    Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, et al. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2015;43(4):905–11.CrossRefGoogle Scholar
  46. 46.
    DePhillipo NN, Moatshe G, Brady A, et al. Effect of meniscocapsular and meniscotibial lesions in ACL-deficient and ACL-reconstructed knees: a biomechanical study. Am J Sports Med 2018:363546518774315.Google Scholar
  47. 47.
    Pfeiffer TR, Naendrup JH, Chan C, et al. Effect of meniscal ramp repair on knee kinematics, ACL in situ force and bony contact forces - a biomechanical study. Orthop J Sports Med. 2018;6(7_suppl4):2325967118S00157.Google Scholar
  48. 48.
    Kanakamedala AC, Burnham JM, Pfeiffer TR, Herbst E, Kowalczuk M, Popchak A, et al. Lateral femoral notch depth is not associated with increased rotatory instability in ACL-injured knees: a quantitative pivot shift analysis. Knee Surg Sports Traumatol Arthrosc. 2018;26(5):1399–405.CrossRefGoogle Scholar
  49. 49.
    Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ, et al. Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1170–6.CrossRefGoogle Scholar
  50. 50.
    Grassi A, Signorelli C, Urrizola F, Raggi F, Macchiarola L, Bonanzinga T, et al. Anatomical features of tibia and femur: influence on laxity in the anterior cruciate ligament deficient knee. Knee. 2018;25(4):577–87.CrossRefGoogle Scholar
  51. 51.
    Branch T, Stinton S, Sharma A, Lavoie F, Guier C, Neyret P. The impact of bone morphology on the outcome of the pivot shift test: a cohort study. BMC Musculoskelet Disord. 2017;18(1):463.CrossRefGoogle Scholar
  52. 52.
    Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis. 1973;32(5):413–8.CrossRefGoogle Scholar
  53. 53.
    Sundemo D, Blom A, Hoshino Y, et al. Correlation between quantitative pivot shift and generalized joint laxity: a prospective multicenter study of ACL ruptures. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2362–70.CrossRefGoogle Scholar
  54. 54.
    Pfeiffer TR, Kanakamedala AC, Herbst E, Nagai K, Murphy C, Burnham JM, et al. Female sex is associated with greater rotatory knee laxity in collegiate athletes. Knee Surg Sports Traumatol Arthrosc. 2018;26(5):1319–25.CrossRefGoogle Scholar
  55. 55.
    Magnussen RA, Reinke EK, Huston LJ, Hewett TE, Spindler KP, Andrish JT, et al. Factors associated with high-grade Lachman, pivot shift, and anterior drawer at the time of anterior cruciate ligament reconstruction. Arthroscopy. 2016;32(6):1080–5.CrossRefGoogle Scholar
  56. 56.
    Ueki H, Nakagawa Y, Ohara T, Watanabe T, Horie M, Katagiri H, et al. Risk factors for residual pivot shift after anterior cruciate ligament reconstruction: data from the MAKS group. Knee Surg Sports Traumatol Arthrosc. 2018;26:3724–30.CrossRefGoogle Scholar
  57. 57.
    Kitamura N, Yasuda K, Yokota M, Goto K, Wada S, Onodera J, et al. The effect of intraoperative graft coverage with preserved remnant tissue on the results of the pivot-shift test after anatomic double-bundle anterior cruciate ligament reconstruction: quantitative evaluations with an electromagnetic sensor system. Am J Sports Med. 2017;45(10):2217–25.CrossRefGoogle Scholar
  58. 58.
    • Getgood A, Brown C, Lording T, et al. The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting. Knee Surg sports Traumatol Arthrosc 2018. This is a detailed review of current data regarding anterolateral complex of knee including current treatment recommendations. Google Scholar
  59. 59.
    Monaco E, Fabbri M, Mazza D, Daggett M, Redler A, Lanzetti RM, et al. The effect of sequential tearing of the anterior cruciate and anterolateral ligament on anterior translation and the pivot-shift phenomenon: a cadaveric study using navigation. Arthroscopy. 2018;34(4):1009–14.CrossRefGoogle Scholar
  60. 60.
    Noyes FR, Huser LE, Jurgensmeier D, Walsh J, Levy MS. Is an anterolateral ligament reconstruction required in ACL-reconstructed knees with associated injury to the anterolateral structures? A robotic analysis of rotational knee stability. Am J Sports Med. 2017;45(5):1018–27.CrossRefGoogle Scholar
  61. 61.
    • Bell KM, Rahnemai-Azar AA, Irarrazaval S, et al. In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test. J Orthop Res. 2018;36(3):847–53 This article is a recent biomechanical analysis using quantitative pivot shift testing in simulated ACL injury that examined the importance of lateral stabilizing structures. Google Scholar
  62. 62.
    Herbst E, Arilla FV, Guenther D, Yacuzzi C, Rahnemai-Azar AA, Fu FH, et al. Lateral extra-articular tenodesis has no effect in knees with isolated anterior cruciate ligament injury. Arthroscopy. 2018;34(1):251–60.CrossRefGoogle Scholar
  63. 63.
    Monaco E, Maestri B, Conteduca F, Mazza D, Iorio C, Ferretti A. Extra-articular ACL reconstruction and pivot shift: in vivo dynamic evaluation with navigation. Am J Sports Med. 2014;42(7):1669–74.CrossRefGoogle Scholar
  64. 64.
    Helito CP, Camargo DB, Sobrado MF, et al. Combined reconstruction of the anterolateral ligament in chronic ACL injuries leads to better clinical outcomes than isolated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2018.Google Scholar
  65. 65.
    Kittl C, El-Daou H, Athwal KK, et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee: response. Am J Sports Med. 2016;44(4):NP15–8.CrossRefGoogle Scholar
  66. 66.
    Huser LE, Noyes FR, Jurgensmeier D, Levy MS. Anterolateral ligament and iliotibial band control of rotational stability in the anterior cruciate ligament-intact knee: defined by tibiofemoral compartment translations and rotations. Arthroscopy. 2017;33(3):595–604.CrossRefGoogle Scholar
  67. 67.
    Geeslin AG, Chahla J, Moatshe G, Muckenhirn KJ, Kruckeberg BM, Brady AW, et al. Anterolateral knee extra-articular stabilizers: a robotic sectioning study of the anterolateral ligament and distal iliotibial band Kaplan fibers. Am J Sports Med. 2018;46(6):1352–61.CrossRefGoogle Scholar
  68. 68.
    Inderhaug E, Stephen JM, Williams A, Amis AA. Anterolateral tenodesis or anterolateral ligament complex reconstruction: effect of flexion angle at graft fixation when combined with ACL reconstruction. Am J Sports Med. 2017;45(13):3089–97.CrossRefGoogle Scholar
  69. 69.
    Porter MD, Shadbolt B, Pomroy S. The augmentation of revision anterior cruciate ligament reconstruction with modified iliotibial band tenodesis to correct the pivot shift: a computer navigation study. Am J Sports Med. 2018;46(4):839–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nicholas J. Vaudreuil
    • 1
  • Benjamin B. Rothrauff
    • 1
  • Darren de SA
    • 1
  • Volker Musahl
    • 1
    Email author
  1. 1.Department of Orthopaedic Surgery, UPMC Rooney Sports ComplexUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations